

Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

Gary W. Hunter and Philip G. Neudeck, NASA Glenn Research Center, Cleveland, OH, USA 44135

> Valarie Thomas Ohio Aerospace Institute Cleveland, OH, USA 44142

> > D. Makel, Makel Engineering, Chico, CA 95973

C. C. Liu, B. Ward, and Q. H. Wu, Electronics Design Center, Case Western Reserve University Cleveland, OH, USA 44106

OUTLINE

- INTRODUCTION
- MICROFABRICATED GAS SENSORS
- SENSOR DEVELOPMENT

HYDROGEN

CARBON MONOXIDE AND NITROGEN OXIDES

CARBON DIOXIDE

OXYGEN

HYDROCARBONS

- HIGH TEMPERATURE ELECTRONIC NOSE
- FIRE DETECTION NEEDS AND APPROACH
- SUMMARY AND FUTURE PLANS

SENSORS & ELECTRONICS TECHNOLOGY BRANCH

SCOPE OF WORK

STRAIN GAGES

CHEMICAL SENSORS

SILICON CARBIDE HIGH TEMPERATURE ELECTRONICS

TEMPERATURE SENSORS

HEAT FLUX GAGES

MICROELECTROMECHANICAL SYSTEMS (MEMS)

MICROSYSTEMS

MEMS: Micro ElectroMechanical Systems (Sensors, Electronics, and Actuators

MICROSYSTEMS: Sensors and devices created using microfabrication and micromachining techniques (Silicon electronics based processing)

BENEFITS: Reduced Size, Weight, and Power Consumption of Components With Significantly Increase Capabilities

APPLICATIONS

Smart Engine Control (e.g. noise, stall) Emissions Reduction Engine Tests Structure and Material Development

ACTIVITIES

High Temperature Pressure Sensor Emission Sensors Heat Flux Sensor Array

TECHNICAL CHALLENGES

Packaging Material Stability, Compatibility Safety/Ice Detection Health Monitoring CFD Code Validation Fuel Delivery (Atomizers)

Sheer Stress Sensor Thin Film Senors High Temperature Electronics

System Integration Corresponding Actuator Systems

MICROFABRICATION AND MICROMACHINING TECHNOLOGY MEMS-BASED TECHNOLOGY

• MICROELECTRONIC FABRICATION TECHNIQUES APPLIED TO CHEMICAL SENSOR DEVELOPMENT

PHOTOLITHOGRAPHIC REDUCTION

THICK AND THIN FILM METALLIZATION

SPUTTERING AND ELECTRON-BEAM DEPOSITION

BATCH PROCESSING/MINIMAL COST

PRECISE CONTROL OF STRUCTURE

MINIMAL SIZE, WEIGHT, AND POWER CONSUMPTION

• MICROMACHINING FOR THREE DIMENSIONAL STRUCTURES

ETCHING AND SACRIFICIAL LAYER METHODS (MINIMIZE HEAT CONSUMPTION)

FABRICATE COMPLEX SHAPES

TAILOR SENSOR STRUCTURE

MICROFABRICATED GAS SENSORS

- COLLABORATIVE EFFORT BETWEEN NASA GRC AND CASE WESTERN RESERVE UNIVERSITY
- SENSOR DEVELOPMENT RESULTING FROM: IMPROVEMENTS IN MICROFABRICATION AND MICROMACHINING TECHNOLOGY DEVELOPMENT OF SIC-BASED SEMICONDUCTOR TECHNOLOGY
- GAS DETECTION IN: HARSH ENVIRONMENTS APPLICATIONS BEYOND CAPABILITIES OF COMMERCIAL SENSORS

TECHNOLOGY DEVELOPS PLATFORMS FOR A VARIETY OF MEASUREMENTS

SCHOTTKY DIODE RESISTANCE BASED ELECTROCHEMICAL

TARGET DETECTION OF GASES OF FUNDAMENTAL INTEREST

```
HYDROCARBONS (C_xH_y)
NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO)
OXYGEN (O_2)
CARBON DIOXIDE (CO_2)
HYDROGEN (H_2)
```


CHEMICAL SENSOR APPLICATION DEVELOPMENT AREAS

SAFETY

FIRE DETECTION

DETECTION OF FIRE PRECURSORS (E.G. CO AND CO2) IN CARGOBAY APPLICATIONS TO SUPPLEMENT EXISTING TECHNOLOGY. CHEMICAL SIGNATURE IN THE PRESENCE OF A NUMBER OF INTERFERING GASES. COMPLEMENT EXISTING SMOKE DETECTION SYSTEMS.

LEAK DETECTION

DETECTION OF FUEL AND OXYGEN LEAKS FOR SPACE TRANSPORTATION APPLICATIONS SUCH AS SPACE SHUTTLE, X-33 AND BANTAM. WIDE RANGE DETECTION IN INERT ENVIRONMENTS AND POSSIBLY CRYOGENIC CONDITIONS.

EMISSIONS

DETECTION OF HYDROCARBONS, NOx, CO, ETC. FOR HEALTH MONITORING AND ACTIVE COMBUSTION CONTROL APPLICATIONS. SENSITIVE DETECTION IN HIGH TEMPERATURE HARSH ENVIRONMENTS IN THE PRESENCE OF A NUMBER OF INTERFERING GASES.

HYDROGEN LEAK SENSOR TECHNOLOGY

1995 R&D 100 AWARD WINNER

- MICROFABRICATED USING MEMS-BASED TECHNOLOGY FOR MINIMAL SIZE, WEIGHT AND POWER CONSUMPTION
- ◆ HIGHLY SENSITIVE IN INERT OR OXYGEN-BEARING ENVIRONMENTS, WIDE CONCENTRATION RANGE DETECTION
- ◆ INTEGRATED WITH SMART ELECTRONICS FOR SIGNAL PROCESSING AND TEMPERATURE CONTROL

SYTEM DELIVERED FOR HYPER X FLIGHT PLANNED FOR SUMMER 00

20 SENSOR SYSTEM DELIVERED FOR X-33 SAFETY SYSTEM

Makel Engineering, Inc.

AUTOMATED HYDROGEN LEAK DETECTION SYSTEM ONNATURAL GAS POWERED CROWN VICTORIA ASSEMBLY LINE

DEMONSTRATED ON STS-95 and STS-96 SHUTTLE MISSIONS

CHOSEN FOR INCLUSION ON ISS WATER PROCESSING O2 GENERATOR.

MINIATURIZED SMART LEAK SENSOR SYSTEM

MICROFABRICATED HYDROGEN SENSOR

HYDROGEN SENSORS ON SPACE SHUTTLE

PROTOTYPE HYDROGEN/OXYGEN SENSOR SYSTEM WITH ELECTRONICS

DEMONSTRATE STAND-ALONE SMART LEAK DETECTION SYSTEM WITH A SURFACE AREA THE SIZE OF POSTAGE STAMP

MICROFABRICATED TIN OXIDE BASED NOx AND CO SENSOR TECHNOLOGY

- MICROFABRICATED FOR MINIMAL SIZE, WEIGHT AND POWER CONSUMPTION
- MICROMACHINED TO MINIMIZE POWER CONSUMPTION AND IMPROVE RESPONSE TIME
- TEMPERATURE DETECTOR AND HEATER INCORPORATED INTO SENSOR STRUCTURE
- NANOFABRICATION OF TIN-OXIDE TO INCREASE SENSOR STABILITY

STRUCTURE OF A MICROFABRICATED TIN-OXIDE SENSOR

PROPERTIES OF NANOCRYSTALLINE SNO2 THIN FILM FROM

SOL-GEL PROCESS

- SMALL PARTICLE SIZE
- HIGH POROSITY
- LARGE SURFACE AREA
- HOMOGENEOUS CHEMICAL AND PHYSICAL STRUCTURE
- DIFFERENT ANNEALING MECHANISMS/RATES

ADVANTAGES FOR SENSOR APPLICATIONS

- HIGH SENSITIVITY
- FAST RESPONSE
- STABLE OPERATION
- LOWER TEMEPERATURE OPERATION

Sol-Gel Process For To Produce Stable Nanocrystalline Thin Films

Nanocrystalline SnO2 after annealing at 600°C for 30 minutes.

Response of a Pt-doped Tin-oxide Sensor to a Range of CO Concentrations at 300°C in Air.

STRUCTURE OF A SnO₂ BASED SENSOR ON A Si SUBSTRATE

EFFECT OF CALCINATION TIME AND SILICATE

700C calcined for 24 hours (on silicon substrate)

Undoped SnO2 Film

5 wt% SiO2 dopedSnO2 Film

The particle and pore sizes increase with calcination time Silicate doping inhibits the particle growth

MICROFABRICATED NASICON BASED CO2 SENSOR TECHNOLOGY

- MICROFABRICATED FOR MINIMAL SIZE, WEIGHT AND POWER CONSUMPTION
- ELECTROCHEMICAL CELL DESIGN USING PROTON CONDUCTING NASICON AS ELECTROLYTE TO DETECT A RANGE OF CO2 CONCENTRATIONS
- TEMPERATURE DETECTOR AND HEATER TO BE INCORPORATED INTO SENSOR STRUCTURE
- SENSOR TO BE COMBINED WITH CO SENSOR FOR SIMULTANEOUS CO/CO2 DETECTION

STRUCTURE OF A NASICON-BASED ELECTROCHEMICAL CELL CO2 SENSOR

CO2 Sensor Response- Peak Currents 3 min set delay - 2 min exposure delay

Conc (% Carbon Dioxide)

MICROFABRICATED OXYGEN SENSOR TECHNOLOGY

- MICROFABRICATED AND MICROMACHINED FOR MINIMAL SIZE, WEIGHT AND POWER CONSUMPTION (LESS THAN 2 W FOR 600 C OPERATION)
- •AMPEROMETRIC OPERATION ALLOWS MEASUREMENT OF OXYGEN OVER A WIDE CONCENTRATION RANGE (0-100%)
- CHAMBER STRUCTURE CONTROLS OXYGEN DIFFUSION RATE
- INCORPORATION OF OXYGEN SENSOR WITH OTHER SENSORS (E.G. HYDROGEN) IN THE SAME PACKAGE PLANNED

Not to scale:

ZrO2 Oxygen Sensor

SIC-BASED GAS SENSOR DEVELOPMENT

- THE USE OF SIC SEMICONDUCTORS ALLOWS SENSOR OPERATION AT TEMPERATURES WHICH ALLOW THE DETECTION OF HYDROCARBONS AND NOX
- SCHOTTKY DIODE DESIGN FOR HIGH SENSISTIVITY
- TEMPERATURE DETECTOR AND HEATER INCLUDED

OPERATION AT A RANGE OF TEMPERATURES

• WIDE RANGE OF APPLICATIONS

EMISSION MONITORING ENGINE HEALTH MONITORING ACTIVE COMBUSTION CONTROL HYDROCARBON FUEL LEAK DETECTION FIRE SAFETY

PROTOTYPE SENSOR PACKAGE FABRICATED

•TWO APPROACHES

ALLOY ON SIC SUBSTRATE REACTIVE INSULATOR APPROACH PACKAGED SiC-BASED SENSOR

HIGH TEMPERATURE GAS SENSOR ARRAY HIGH TEMPEERATURE ELECTRONIC NOSE

Metal-SiC Schottky diodes

Metal-Reactive Insulator SiC Schottky diodes

Makel Engineering, Inc.

SOFTWARE DEVELOPMENT TO INTERPRET SIGNALS PROTOTYPE SOFTWARE SYSTEM IMPLEMENTED

Prototype Sensor Head Used in Engine Test

Brassboard Integrated Microsystem

Sensor Operating Temperature 400 C with +/- 8 C stability in dynamic environment

Electronics and Sensor Head

Sensors Tested Oxygen (0 to 21%) CO (0 to 3000 PPM) Hydrocarbons (0 to 2500 PPM C_2H_2) NOx (0 - 300 PPM)

Harsh Environment Demonstration Testing 1.9 liter, four cylinder HCCI at U.C. Berkeley (propane/air)

Micro-Fabricated Gas Sensors for Low False Alarms

BACKGROUND

- COMMERCIAL PASSENGER AIRCRAFT TO HAVE CARGO SMOKE DETECTION & FIRE SUPPRESSION
- EXISTING SMOKE DETECTION TECHNOLOGY PRONE TO FALSE ALARMS (DIRT, DUST, MOISTURE, GASES, ETC.)

>EMERGENCY DIVERSIONS & UNNECESSARY DISCHARGE OF HALON

► FALSE ALARM RATE AS HIGH AS 200:1

• PRODUCE TECHNOLOGY WITH DIFFERENT FAILURE MECHANISMS

>MONITOR CHEMICAL SPECIES

COMPLEMENTARY INFORMATION

- A NUMBER OF GASES EMITTED DURING FIRE/DEPENDENT ON FIRE
 >TWO GASES OF PARTICULAR INTEREST: CO/CO2
- IN COLLABORATION WITH:

≻FAA: TESTING

SANDIA NATIONAL LABS: MODELING

Micro-Fabricated Gas Sensors for Low False Alarms

FEATURES

•MICROFABRICATED CO/CO₂ GAS SENSOR ARRAY

CENTRAL TO APPROACH

>NANOCRYSTALLINE MATERIALS (IN CO SENSOR) PRODUCE MORE SENSITIVE, STABLE SENSORS

>TWO APPROACHES TO CO2 DETECTION

≻MINIMAL SIZE/WEIGHT/POWER

•CHEMICAL GAS SENSORS PROVIDE GASEOUS PRODUCT-OF-COMBUSTION INFORMATION

SENSOR ARRAY CAN DETECT RANGE

OF GAS SPECIES

≻TO BE COMBINED WITH INTELLIGENT

SOFTWARE FOR PATTERN RECOGNITION

•BENEFITS

>DISCRIMINATE FIRES FROM NON-FIRES

≻POTENTIAL SPIN-OFF TO HIGH-TEMPERATURE

ENGINE MULTI SPECIES EMISSION CONTROL

CHEMICAL SENSOR FIRE DETECTION

Metal-SiC Schottky diodes NASICON Based Electrochemical Cell

CONFIGURATION OF POTENTIAL FIRE DETECTION ARRAY

Makel Engineering, Inc.

SUMMARY (CONT)

- AEROSPACE APPLICATIONS REQUIRE A RANGE OF CHEMICAL SENSING TECHNOLOGIES
- NEW FAMILY OF GAS SENSOR TECHNOLOGY BEING DEVELOPED TO MEET THESE NEEDS USING:

>MICROFABRICATION AND MIRCROMACHING TECHNOLOGY

>NANOMATERIALS

>SIC-BASED SEMICONDUCTOR TECHNOLOGY

• FIRE DETECTION APPLICATIONS:

LEVERAGE EXISTING SENSOR DEVELOPMENT MULTIPLE SENSOR TYPES SENSOR ARRAYS ELECTRONICS

>MINIATURIZED TECHNOLOGY WITH MINIMAL SIZE, WEIGHT, AND POWER CONSUMPTION

>MULTIPLE POINT LOCATION

•

Instrumentation & Control Technology Division

SUMMARY

- COMBINATION OF SMOKE AND CHEMICAL SENSING TECHNOLOGY COMPLEMENTARY INFORMATION DIFFERING FAILURE MECHANISMS
- MULTIFUNCTIONAL SENSOR ARRAY CO/C02/HUMIDITY/HYDROCARBONS INTEGRATED SYSTEM SENSORS/POWER/COMMUNICATION
- FIRST GENERATION SYSTEM TO BE TESTED AT FAA IN FALL O1
- SANDIA MODELING: SENSOR PLACEMENT/INTERPRETATION OF RESULTS
- SYNERGY BETWEEN NASA SPACE AND AERONAUTICS APPLICATIONS
- LONG-TERM: INTEGRATE WITH MEMS-BASED SMOKE DETECTION SYSTEM FOR SPACE APPLICATIONS