CRASHWORTHINESS OF COMPOSITE FUSELAGE STRUCTURES -Material Dynamic Properties

K.S. Raju Department of Aerospace Engineering Wichita State University

Program Monitor : Allan Abramowitz FAA William J. Hughes Technical Center

The Fifth Triennial International Aircraft Fire and Cabin Safety Research Conference, Oct 29- Nov1, 2007, Atlantic City, NJ

Background

- Crashworthiness
 - Maintain survivable volume
 - Alleviate occupant loads
- Energy Absorption
 - Metals Plastic deformation
 - Composites controlled failure modes
- Factors affecting energy absorption
 - Geometry (?)
 - Strain rate (?)

Energy Absorption in Composites

 \boldsymbol{E}

- Maximize energy dissipated due to formation of surfaces
 - Matrix cracks, delaminations, fiber-matrix interface failure, fiber fractures
 - Maximize the damage volume {multiple locations of damage}
- Minimize reduction /loss of load path
 - Provision for sustained stability

Maximization bounded by *"stability"* of the transmitting structure/device and availability of crush space

Maximization bounded by *"safe loads"* that can be transmitted

Energy Absorption Devices

Anole stiffene

Figure 11. Finite elelment simulation of HTP-cruciform under impact at 10 m/s.

Figure 12. Load-deflection response of HTP-cruciforms under impact-comparison of finite element simulation and test data.

Hull D (1991) Comp. Sci Tech, 40. Bannerman & Kindervater (1984) in Structural Impact and Crashworthiness Bolukbasi & Laananen (1995) Composites, 26. Carruthers, Kettle & Robinson (1998) Appl Mech Rev, 51.

-Rate effects are evident (+ or -) but in terms of stroke rate

-Strain rates not reported /measured (?)

-Strain rate not proportional to stroke rate due to complexity of localized deformation & Strain gradients

APPROACH

Tasks..

- Phase-I
 - In-Plane Tensile Properties (Strength & Modulus)
 - [0°]_n, [±15°]_{ns},[±30°]_{ns}, [± 45°]_{ns}
 - In-Plane Compressive Properties (Strength & Modulus)
 - $[0^{\circ}]_{n}$, $[\pm 15^{\circ}]_{ns}$, $[\pm 30^{\circ}]_{ns}$, $[\pm 45^{\circ}]_{ns}$
 - In-Plane Shear Properties (Strength & Modulus)
 - [0°/90 °]_{ns}
- PHASE-II
 - Open- Hole Tension
 - Pin Bearing
 - Interlaminar Shear
 - Flexure
 - Scaled Fuselage sections
 - PHASE-III

• PHASE-IV

- Fracture Toughness

- EA device

Material Systems

- Material systems selected by FAA/industry participants
 - State of Kansas (NIAR.INDUSTRY.STATE) funding
 - Boeing, Spirit Aerosystems, Hawker BeechCraft (Raytheon), Cessna
 - FAA personnel involved
 - Allan Abramowitz, Curtis Davies, J. Zvanya
 - Wide range of materials
- Material Systems
 - Newport NB321/3k70P
 - Newport NB321/7781 Fiberglass*
 - Newport NCT321/G150 Unitape
 - Toray T800S/3900-2B[P2352W-19] BMS8-276 Rev-H- Unitape*
 - Toray T700G-12K-50C/3900-2 Plain Weave Carbon Fabric*
 - Fibercote E-765/PW Carbon Fabric /Epoxy
 - Cytec PWC T300 3KNT Plain Weave Carbon Fabric*
- Material systems for phase-II and beyond limited to Newport & Toray systems

Tensile Properties ... Quasi-Static Loading

TEST APPARATUS

- TENSION MODE TESING
 - Tension, shear and flexure tests
- MTS High Stroke Rate System (MTS-HSRS)
 - Stroke rate ~ 500 in/sec
 - +/- 7 inches stroke
 - Load capacity
 - 5 kips @ rated speed
 - 9 kips maximum
 - Load measurement
 - Piezoelectric load cells
 - +/- 0.5kip, +/- 1kip, +/- 10kips
 - National Instruments PCI 6110 DAQ
 - 4 Channels
 - 5 MHz (simultaneous sampling)
 - 12 bits resolution
 - Test control
 - MTS MultipurposeTestware computer program

TEST APPARATUS

- TENSION MODE TESING
 - Tension, shear and flexure tests

SLACK INDUCER MECHANISM

 Allows actuator acceleration to desired speed prior to loading the specimen

• LOW-MASS GRIPS

-mechanical wedge grips

-2.4 lbs

-15 kip capacity

Davis, E.A., Trans. ASME, 60, 1938 Elam, C.F., Proc. Roy. Soc. Lond., A, 165, 1938 ManJoine, M.J., Trans. ASME, 66, 1944 A-21 Milkowitz, J., Trans.ASME, 69, 1947 A-21 Morrison, J.L., Engineer, Lond., 158, 1934

TENSION TEST APPARATUS

• Signal Modulation

Tension testing – Signal Modulation

• Correction using Experimentally determined Transfer Function

Tension Testing

- SPECIMEN GEOMETRY
 - 2 inch gage length
 - 0.5 inch width
 - Thickness limited by loading capacity of the testing machine
- TEST RATES
 - 1x10⁻⁴ in/s (quasi-static)
 - 1, 10, 100, 250 and 500 in/s
 - 3 specimens each

• CONSTANT STROKE RATE TESTS

- Based on actuator displacement
- Strain rate varies throughout the test
 - Variation of strain rate is dependent on slack inducer element (s) characteristics (stiffness and mass)

Tension testing – Results

- Maximum strain rate achieved ~ 250/s
- Tensile Strengths
 - Tension strength was observed to increase with stroke (strain) rate for all material systems & orientations
 - Magnitude of strength increase was dependent on fiber orientation and material system
 - Newport NB321/7781 fiberglass material exhibited highest strength increase amongst the materials tested

Effects of Combined State of Stress

IN-PLANE SHEAR STRENGTH

NEWPORT MATERIAL SYSTEMS

- Fabric reinforced systems (3k70P and 7781)
 - Shear strength increases with stroke rate
 - Failure mode changes at higher rates
- Unitape system
 - Shear strength increases up to stroke rate of 100in/s, but decrease at 250 and 500 in/s
 - No change in failure mode

IN-PLANE SHEAR STRENGTH

COMPARISON OF SHEAR STRENGTHS

- Fabric reinforced systems
 - Shear strength increases with stroke rate
 - Failure mode changes at higher rates
- Unitape system
 - Shear strength increases up to stroke rate of 250 in/s, but decreases at 500 in/s
 - No change in failure mode
- Corrections for modulation of load signal
 - Transfer function (under progress)

COMPRESSION TEST APPARATUS

- COMPRESSION MODE TESTING
 - Split- Hopkinson Pressure Bar (SHPB)
 - Compressive strength
 - MTS servo hydraulic testing machine
 - · Compression at slow to medium rates

• SHPB SPECIFICATIONS

- Bar diameter : 1.00 inch
- Bar Material : Vascomax 350
- Bar lengths
 - Incident bar : 48"
 - Transmitter bar : 36"
- Barrell length : 48 inches
- Projectiles : 1", 2", 4", 6" & 12"
 - Pneumatically driven (100 psi)
 - Velocities ~ 2000 in/s
- PULSE SHAPING
 - Copper discs
- DATA ACQUISITION
 - Tektronix TDS 3034 Digital Oscilloscope
- SIGNAL CONDITIONING
 - Ectron model 778 (3 MHz bandwidth)

P.S.Follansee, Metals Handbook, vol.8, American Society for Metals, 1985 K.F. Graff, Wave Motion in Elastic Solids, Dover Pub., Inc.1991

SPLIT-HOPKINSON PRESSURE BAR APPARATUS (SHPB)

• SPECIMEN GEOMETRY^{Ref}

- Rectangular cross-section
- Laminate thickness (t) ~ 0.17 to 0.25 inches
- Specimen width (b) ~ 0.25 inches
- Specimen height (H) ~ 0.25 inches

• SPECIMEN ALIGNMENT

- Centering disc & slider ring

SPECIMEN

Ref: E. Woldesenbet & J.R. Vinson, AIAA Journal, Vol.37, Sept. 1999.

Compression Testing...Results

Failure modes

0.0017 s⁻¹

1 s⁻¹ 450 s⁻¹

633 s⁻¹

763 s⁻¹

Compression Testing...Results

PIN-BEARING RESPONSE

Material Systems

- Newport NB321/7781 fiberglass
- Newport NB321/3k70 PWCF
- Toray T700G-12K-50C/3900-2 PWCF
- Laminate type
 - [45/0/45/0/45]
- Pin diameter : 0.125 inches
- Test speeds : quasi-static, 1 ,10,100, and 250 in/S
- **RESULTS**
 - Sustained loading past initial failure, decreases at higher rates of loading
 - Failure mode

PIN-BEARING RESPONSE

FLEXURE TESTS

• LAMINATED BEAMS

- Material systems
 - Newport NB321/7781
 fiberglass
 - Newport NB321/3k70 PWCF
- Layup sequence
 - [0/45/45/0]
- SANDWICH BEAMS
 - Material systems
 - Newport NB321/7781
 fiberglass
 - Newport NB321/3k70 PWCF
 - Layup sequence
 - [0/45/0/45/CORE]_S
- STATUS : Testing completed

FLEXURE TESTS – Sample results

Peak bending load Vs Normalized time for **Carbon fiber beam specimens at various** strokes rates.

FLEXURE TESTS – Sample Results

Peak bending load Vs Normalized time for **fiberglass beam specimens at various strokes** rates.

FLEXURE TESTS - RESULTS

Typical strain rates achieved in the gage section of the beams

Maximum strain rate achieved in the test region ~ 100 s^{-1}

SCALED FUSELAGE SECTION TESTS

Work in Progress

- Rate effects on delamination fracture toughness
 - nearing completion
- Rate effects on behavior of corrugated webs under compression
 - Failure modes
 - Energy absorption
- Signal modulation corrections for test data
- Tensile characterization using SHPB (rates ~ 10³ 1/s)

