

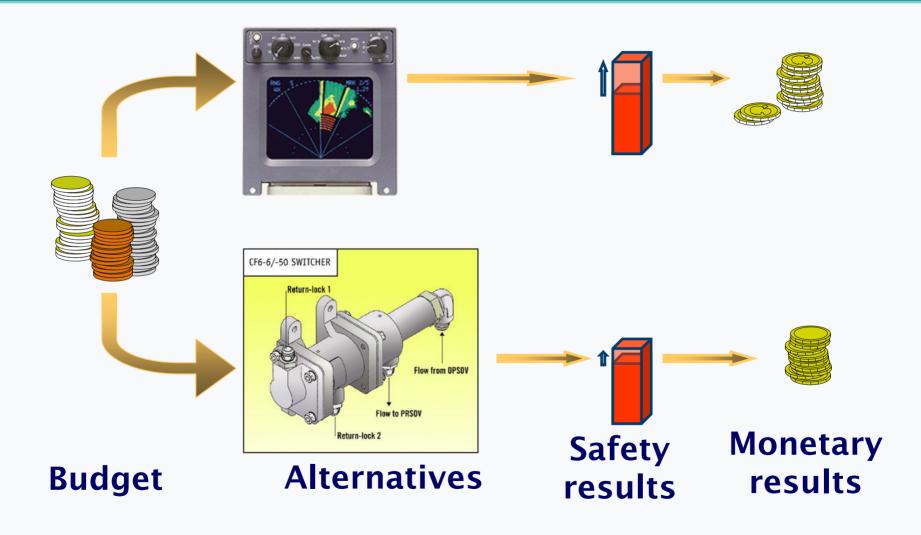
NLR Air Transport Safety Institute

Research & Consultancy

Safety has Value - ASICBA project

Job Smeltink

HIASF07 Atlantic City - 29 October 2007



ASICBA project

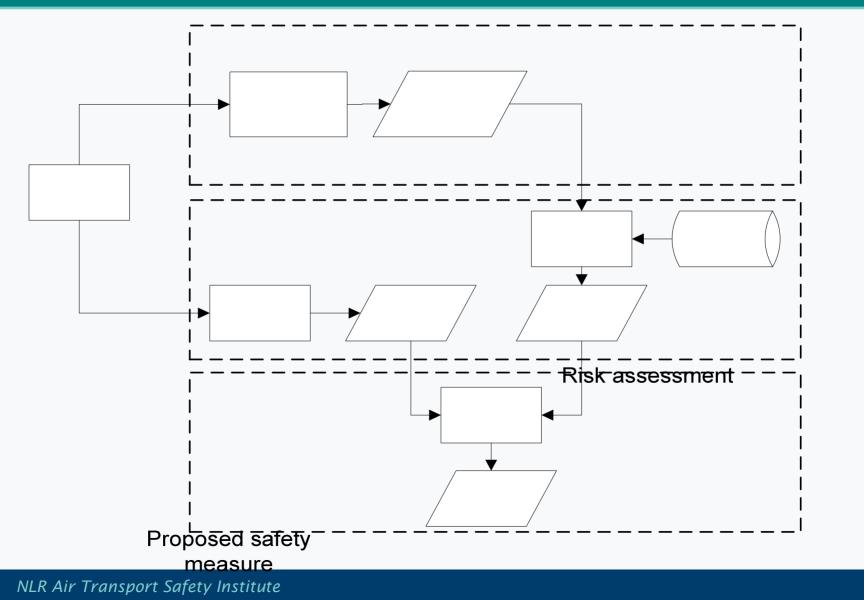
Safety investment

NLR Air Transport Safety Institute Research & Consultancy

Description

The main concept:

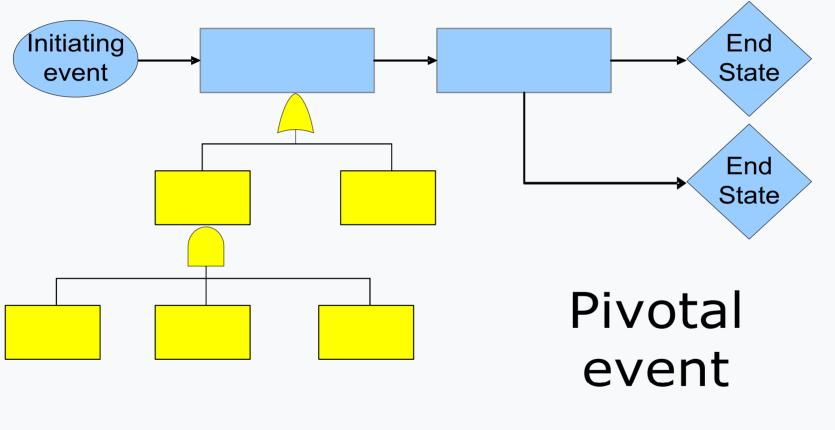
- Express safety effects in monetary terms (safety value)
- Compare to the costs via a cost-benefit trade-off



- 1. Risk model
- 2. Linking of Risk and Cost model
- 3. Cost model

Overall model

Differen probab Impa Vect


Proposed safety measure

- 1. Case description
- 2. Scope
- 3. Time horizon
- 4. ...

Risk model structure

NLR Air Transport Safety Institute Research & Consultancy

Quantification

- Focus on western-built commercial air transport (>5700kg)
- NLR Air Safety Database
 - Collection of databases
 - Accidents and incidents of fixed wing aircraft worldwide from 1960 onward
 - Non-accident related data (flight exposure, weather)

Linking Risk & Cost model

Consequences of a scenario (impact categories):

Direct:

- Aircraft
- Occupants
- Operation (aircraft involved)

Indirect:

- Other airlines
- Airport
- Third party

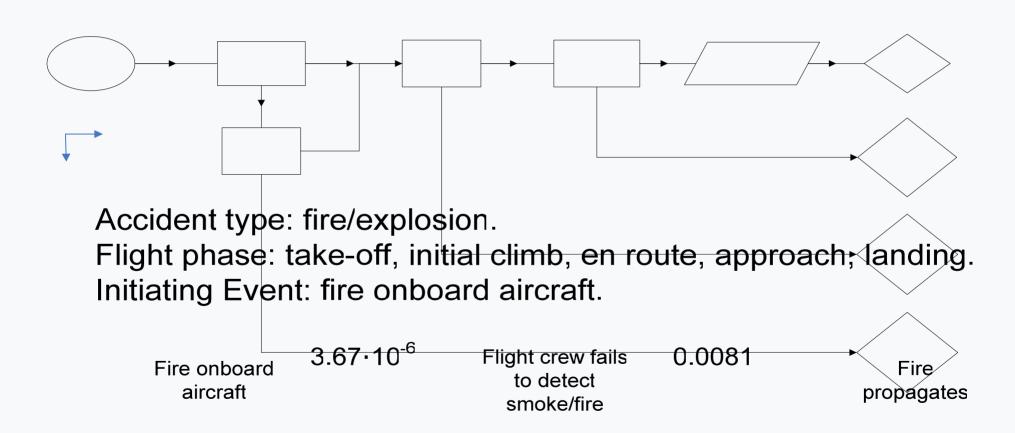
NLR Air Transport Safety Institute

		Direct	_	Indirect				
	Aircraft	Occupants	Operation aircraft involved	Other airlines	Airport	Third party		
4	>75% damage (beyond economical repair)	=>80% killed or seriously injured.	>4hrs delay (Flight aborted)	Many flights cancelled	>10 killed or seriously injured			
3	50% damage	40 % killed or seriously injured (i.e. 10 to 80%)	2 hrs < delay < 4 hrs	Many delays	Airport closed for 2 hours and runway closed for 2 days	1 <= killed or seriously injured < 10		
2	15% damage	5% killed or seriously injured (i.e. 1 to 10%)	30min < delay < 2hour	Less than many delays	Airport closed for 30 minutes and runway closed for 12 hours	Some property damage and/or minor injuries		
1	1% damage	<1% killed (and/or <5% seriously injured)	15min < delay < 30min	Little delays	Runway closed for 3 hours	Some property damage		
0	No Impact	No impact (no fatalities or seriously injured but could have a few minor injuries	No Impact (less than 15min delay)	No Impact	No Impact	No Impact		

Cost model structure

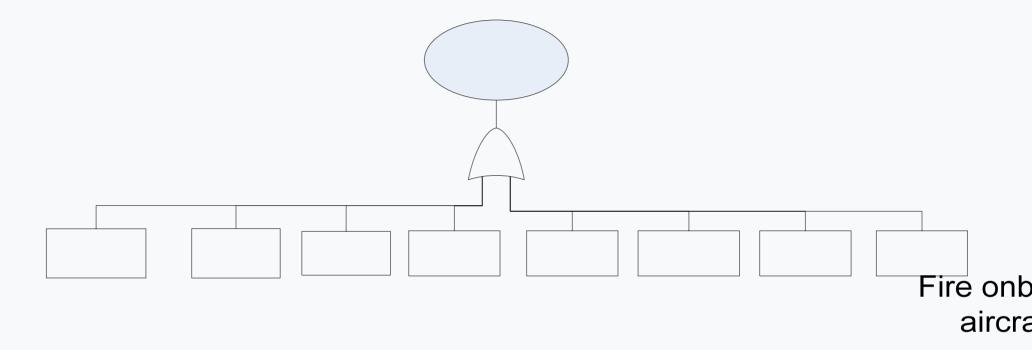
Accident costs are key notion

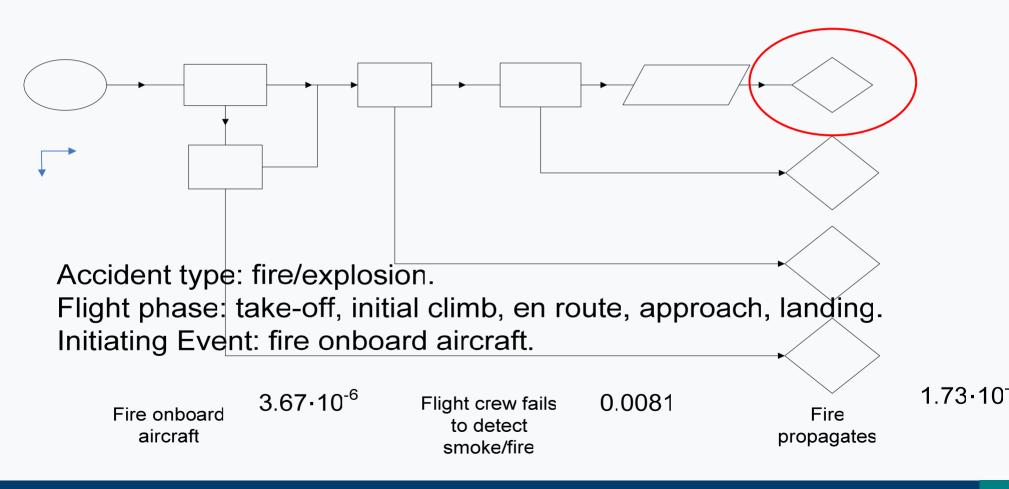
24 Heads of cost identified:


- Aircraft physical damage (cost of repair/replacement)
- Aircraft loss of use
- Site contamination and clearance
- Airline costs for delay (diversion, passenger management etc.)
- Airport closure
- etc.

Each impact category is linked to one or more heads of costs

Allocated to particular stakeholders


Example: Scenario 11 Fire onboard aircraft


Example: Scenario 11

NLR Air Transport Safety Institute Research & Consultancy

OR

Linking Risk & Cost model

Linking Risk & Cost mode

Direct Indirect Aircraft Third party Operation Other Airport **Occupants** aircraft airlines involved >75% damage =>80% killed or Airport closed for Many flights seriously injured. >4hrs delay 12 hours and >10 killed or (bevond 4 economical (Flight aborted) cancelled runway closed for seriously injured repair) 10 days 40 % killed or Airport closed for 2 1 <= killed or 2 hrs < delay < 4 seriously injured 3 50% damage Many delays hours and runway seriously injured < hrs (i.e. 10 to 80%) closed for 2 days 10 5% killed or Airport closed for Some property seriously injured 30min < delay < Less than many 30 minutes and 2 damage and/or 15% damage (i.e. 1 to 10%) 2hour delays runway closed for minor injuries 12 hours <1% killed (and/or 15min < delav < Runway closed for Some property <5% seriously 1% damage Little delays 3 hours 30min damage injured) No impact (no fatalities or **No Impact** seriously injured (less than 15min 0 No Impact **No Impact No Impact** No Impact but could have a delay) few minor injuries

NLR Air Transport Safety Institute

Scenario 11: Result

NLR Air Transport Safety Institute Research & Consultancy

End State		Severity					Before	After
Collision with ground		4	4	0	0	1	2.64·10 ⁻⁸	1.32·10 ⁻⁸
Aircraft continues flight damaged	1	1	4	0	0	0	0	0
Aircraft continues flight damaged		1	4	0	0	0	1.50·10 ⁻⁶	1.51·10 ⁻⁶
Aircraft continues flight damaged		1	4	0	0	0	2.14·10 ⁻⁶	2.14·10 ⁻⁶

Example costs (aircraft) NLR Air Transport Safety Institute Research & Consultant

Aircraft Heads of costs **Severity level Physical** Loss of use Loss of resale damage value € 32 m € 0 m € 0 m 4 € 16 m 3 € 4.8 m € 3 m 2 € 5 m € 2.4 m € 1.5 m 1 € 0.3 m € 1.3 m € 0.4 m \mathbf{O} € 0 m € 0 m € 0 m

NLR Air Transport Safety Institute Research & Consultancy

- Measure » change in probability » Safety value
- Investment costs
- Operational costs
- Operational benefits (if any)
- Trade off
 - Airline / airport / ...
 - Society

» Internal Rate of Return / Net Present Value

Conclusion

CBA is a useful tool for understanding gains and losses of safety investments

- CBA should be one of the inputs in decision making process
- Safety benefits often disregarded in CBA
- ASICBA method offers opportunity to include safety benefits in CBA

Thank you for your attention!

Questions?

NLR Air Transport Safety Institute

6-12-2007 21