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Halogenated flame-retardants (FRs) 
- Highly effective for flame-retardation as additives to polymer materials

- Face legislative scrutiny, due to health and environmental concerns
(particularly related to bioaccumulation and toxicity)

Synthetic organic polymers
- A mainstay of modern society, used in fabricating textiles, upholstery, 
construction materials, vehicles, and electronic devices

- Pose a significant threat due to their inherent flammability 

Background



Small molecule flame-retardants
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Broader Project Objectives

Synthesis of novel inherently fire-resistant polymers

Requirements:
• High thermal stability
• Low combustion heat release rate
• Minimal toxic fume release
• Environmental friendly (non-halogenated)
• High char formation

Polymers with high C/H ratio (aromatic, high degree of unsaturation) 
show better fire-resistant properties, as the lack of hydrogen fuel leads to 
facile char formation

Presentation topics for:
The Sixth Triennial International Fire & Cabin Safety Research Conference

October 27, 2010

1) Deoxybenzoin-containing polymers (BHDB)
2)  Bis-phenol triazole (BPT) polymers



Heat release capacity (HRC) of polymers

Walters, R.N.; Lyon, R.E. J. Appl. Polym. Sci. 2003, 87, 548
Pyrolysis combustion flow calorimetry  (PCFC) 
enables effective analysis of milligram quantities
of novel and known materials! 



Bisphenol A Polycarbonate
(Lexan)

Bisphenol C Polycarbonate
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Bisphenol  A vs. Bisphenol C 

J. Polym. Sci. Part A: Polym. Chem. Ed. 1980, 18, 579;  J. Appl. Polym. Sci. 2003, 87, 548



Rationale for observed bis-phenol C charring 

Ramirez, M. L. Thermal Decomposition Mechanism of 2,2-Bis(4-hydroxyphenyl)-1,1-dichloroethylene Based Polymers. DOT/FAA/AR-
00/42.; Department of Transportation, Federal Aviation Administration, National Technical Information Service: Springfield, VA, 2001; 
Stoliorav, S.I.; Westmoreland, P.R. Polymer 2003, 44, 5469; van der Waals et al. J. Mol. Cat. A 1998, 134, 179 

Presence of chlorine assists in setting up the rearrangement chemistry 

Conversion into diphenylacetylene – key step in char formation

Deoxybenzoin conversion to diphenylacetylene at high temperatures
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BHDB preparation from desoxyanisoin, and integration into polyarylates

• One step synthesis of monomer in 
high yields, up to 500 g scale

• Polyarylate: HRC = 65 J/g-K; Char 
yield = 45%

• Low solubility and low molecular 
weight (Mw < 5000 g/mol)

• Copolymerization improves  
processibility
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Desoxyanisoin 4,4’-bishydroxydeoxybenzoin (BHDB)
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Ellzey, K. A.; Ranganathan, T.; Zilberman, J.; Coughlin, E. B.; Farris, R. J.; Emrick, T. Macromolecules 2006, 39, 3553

reflux
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Char yield = 45 % Heat release capacity = 80 J/g-K

Char yield = 52 %

Heat release capacity = 35 J/g-K
Char yield = 57 %

BHDB-based halogen-free polymers are “ultra fire-resistant”

Macromolecules 2006, 39, 3553; Macromolecules 2006, 39, 5974 
J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4573; Polym. Degrad. Stab. 2008

Deoxybenzoin epoxy adhesives:  Polymer, 2009 



Federal Aviation Administration flammability testing

Predominant charring, no dripping, and lowest flammability (5VA) rating 



• Polyurethanes from polyols + diisocyanates, 
or polyisocyanates + diols

• Depending on formulation, polyurethanes are obtained with varying 
hardness and density

• Polyurethane foams:
used in mattresses, upholstery, automobile seats, etc. 

• Halogenated additives reduce flammability

• Objective: prepare non-halogenated low flammable polyurethanes
with no additives (small molecule or otherwise)
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Reducing flammability of polyurethanes 



Potential options for deoxybenzoin in polyurethanes 
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2. Deoxybenzoin for hydroxyl formulations 

BHDB 
(or extended diols) 

Journal of Materials Chemistry, 2010



Polymer Reagents (weight %) PCFC TGA

Polyether 

polyol

BHDB-

oligomer

MDI-

prepolymer

Othersa HRC 

(J/g-K)

THR (kJ/g) Char yield 

(%)b

18 74.9 0 23.1 2.0 476 22.9 0

19 62.6 12.6 22.8 2.0 437 21.1 15

20 53.6 21.6 22.8 1.9 371 19.9 19

Charring polyurethane foams 
Objective:  impart flame resistance and charring to foam, while maintaining suitable properties 



Commercial systems, BHDB, and BPT

Thermally induced structural transformation: BHDB and BPT

T. L. Gilchrist et. al.
J. Chem. Soc. Perkin Trans. 1, 1975, 1-8
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Heat release properties of BHDB-polyarylate
heat release capacity (HRC): 65 J/(g K); 
total heat release (THR): 7.5 kJ/g; char : 45% at 850 oC           

Halogen-free ultra low flammability polymers
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Macromolecules, 2006, 39, 3553-3558

- T. Ranganathan et. al.
J. Mater. Chem., 2010, 20, 3681-3687

Bis-phenol triazole (BPT)



Bisphenol-1,2,3-triazoles (BPT)
Synthesis and purification of BPT monomers 

Purification of BPT monomers
- recrystallized in acetic acid/water
- melting point: 275 oC (4-BPT); 205 oC (3-BPT)

No prior polymerization chemistry reported for BPT

1H NMR spectra of BPT monomers

Tron and coworkers, ChemMedChem, 2007



4-BPT polyarylate

Synthesis of 4-BPT polyarylate 

*4-BPT polymer is insoluble in common organic solvents such as DMSO, DMF, and NMP

Heat release and char properties of 4-BPT polyarylate compared to 
bisphenol A (BPA) and other commercial polymers 

polymer HRC (J/(g 
K))

THR 
(kJ/g)

char (%)

BPA polyarylate 456 ± 13 17.7 ± 0.5  26
BHDB polyarylate 65 ± 5 7.5 ± 0.2 45
4-BPT polyarylate 46 ± 5 6.8 ± 0.3 47
Kevlar® 363 ± 2 8.8 ± 0.5 38
Nomex® 99 ± 1 6.6 ± 0.2 43



4-BPT/BPA copolyarylate

*4-BPT/BPA copolymer is insoluble or partially soluble in common organic solvents

Heat release and char properties of 4-BPT/BPA copolyarylate 
polymer HRC (J/(g 

K))
THR 

(kJ/g)
char (%)

BHDB/BPA 53/47 148 ± 10 12.3 ± 0.5 34
4-BPT/BPA 50/50 95 ± 4 12.0 ± 0.5 38
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3-BPT polyarylates

*3-BPT polymer is soluble in 
NMP, and copolymer is soluble 
in TCE, DMF, and NMP!

+ Cl Cl

OO

3-BPT isophthaloyl dichloride 3-BPT polyarylate
(85-90% yield)
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Angewandte Chemie, 2010, in press



3-BPT polyarylates

Estimated molecular weights of 3-BPT polymer and copolymer 

polymer
GPC a ηinh

b

(dL/g)PDI
3-BPT polyarylate 10,900 27,600 2.53 0.48
3-BPT/BPA 50/50 7,800 17,900 2.29 0.42

Mn Mw

a Molecular weights were estimated by size exclusion chromatography
in NMP (0.05 M LiCl) at 80 oC. b Data were obtained at room temperature.

Heat release and char properties of 3-BPT polymers 
polymer HRC (J/(g 

K))
THR 

(kJ/g)
char (%)

3-BPT/BPA 50/50 a 102 ± 5 11.3 ± 0.4 44
4-BPT polyarylate 46 ± 5 6.8 ± 0.3 47
3-BPT polyarylate 23 ± 3 4.6 ± 0.2 56
Kapton® 14 4.0 66

a Incorporated ratio was measured in 1H NMR spectrum.



Thermally induced structural transformation
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TGA thermograms of BPT polymers

FT-IR spectra of 3-BPT polymer (black), and the 
same polymer after heating at 350 oC for 10 
minutes.
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Mechanical properties and flame test on a small sample

Initial tensile test of 3-BPT polymer 
- hot pressing at 250 oC for 10min.
- sample size:  3×0.3×0.025 cm

- ultimate strength: 95±25 MPa 
tensile modulus: 2.5±0.3 GPa  

Small-scale flame test 
Conducted by placing a sample specimen approximately (2×0.5×0.025) cm 
in a propane torch flame at a 45 deg angle for 5-10 s and noting the time 
required for the sample to self-extinguish upon removal from the flame 

a) 3-BPT polymer film formed by hot-pressing;       
b) 3-BPT fibers pulled from the melt.

Small-scale flame test configuration; b) samples after 
the test (left: 3-BPT polyarylate; right: Kapton®.

Films of BPT polymers were seen to
be extinguish immediately.
(‘self-extinguishing’)
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