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Primary Goal:
To present an overview of modeling activities 

designed to provide a capability for modeling 
transportation accidents and the subsequent 
thermal (fire) environment.

• Multiple previous reports describe the capability 
and provide guidance on using the method

• Sierra/StructuralDynamics Presto code for 
structural dynamics

• Sierra/FluidMechanics Fuego code for predicting 
reacting flows

• It is hoped that this capability will address aircraft 
impact simulation needs for scenarios like that of 
September 11, 2001  

Methods:
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Simulation Codes

• Coupling methods are significant, and have required study 
and development to best model these scenarios

• Dimensionless drop separation distance used to define 
transfer time appropriate for individual drops:

Presto Phenomena Fuego
 Gravity Force  
 Structural Deformation  
 Mass Conservation  
 Momentum  

~ Energy Conservation ~ 
 Structural Material Interactions  

~ Sensible Energy  
 Surface Tension Forces ~ 
~ Liquid Phase Viscous Forces ~ 
~ Gas Phase Transport  
~ Multiphase Interactions ~ 
 Chemically Reacting Flows  
~ Wind  
 Turbulence  
~ Thermal Response of Materials  

• Presto products initialized as 
spheres in Fuego

• Aluminum (casing) ignored in 
Fuego

• Impacting drops all stick in 
Fuego

Illustrating the Physics Challenge

ngthsticDropLeCharacteri
cetantionDissticSeparaCharacteriB =
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Code Details
• Presto SPH used for highly deforming structure 

and water
– Using constants to approximate liquid behavior
– Typical runs on ~100 CPUs for a few days

• Fuego CFD Lagrangian/Eulerian Drop Models 
used:
– Reactions modeled with Eddy Dissipation Concept 

(EDC) reactions and Temporal Filtering of the 
Navier-Stokes Equations (TFNS) turbulence model

– Multiple levels of mesh refinement
– Drop breakup with a modified Taylor Analogy 

Break-up (TAB) model
– Typically run on ~200 CPUs for around 8 days
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Scenarios
Three cases are presented here:
• Rocket sled braking pre-test instrumentation 

simulations
– Brown A.L., Metzinger, K.E., “Computational Test Design for High-Speed Liquid Impact and 

Dispersal,” Submitted to the ASME/JSME 2011 8th Thermal Engineering Joint Conference, 
March 13-17, 2011, Honolulu, HI, USA, AJTEC-44422.

• Validation to a large-scale water tank impacting a 
concrete barricade

– Brown A.L., Wagner, G.J., “Fluid Spread Model Validation for Emerging Liquid Tank Impact 
Predictive Methods,” Accepted to the ASME IHTC Conference, ASME IHTC-2010, August 8-13, 
2010, Washington DC, USA, IHTC14-23067. 

• A notional impact of a 0.3 cm square tank of 
heptane  

– Brown A.L., “Impact and Fire Modeling Considerations Employing SPH Coupling to a Dilute 
Spray Fire Code,” Proceedings of the ASME 2009 Summer Heat Transfer Conference, ASME 
SHTC-2009, July 19-23, 2009, San Francisco, CA, USA, HT2009-88493. 

– Brown A.L., “Impact and Fire Modeling for Complex Environment Simulation,” The 2010 
Western States Meeting of the Combustion Institute, Paper # 10S-12, March 21-23, 2010, 
Boulder, CO, USA. 
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Sled Track Simulation Details

These simulations are pre-test design calculations 
to locate instruments for validation data:

– liquid dispersal velocity (photometrics)
– local droplet size distributions and velocities (Malvern Spraytec and 

phase Doppler particle analyzer)
– ground level liquid deposition (catch pans)
– droplet evaporation and vapor transport (RH sensors)

Initial Presto Geometry

Two Mesh Densities Used

Designed Geometry
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Simulation Matrix

The simulation matrix involved three Presto 
calculations and four Fuego calculations.  

Simulation Water Element 
Size (cm) 

Water 
Draw (cm) 

Initial Scoop 
Velocity (m/s) 

S1 1.9 10.2 146 
S2 1.9 15.9 91.4 
S3 0.95-1.9 10.2 146 

 

Structural Test Matrix

Fluid Test Matrix

Fuego 
Simulation 

Presto 
Sim. 

Simulation 
Transfer 
Time (s) 

Number 
of 

Transfers 

Fuego Mesh 
Elements 

(Thousands) 
F1 S1 0.01-0.10 10 700 
F2 S2 0.02-0.24 11 700 
F3 S3 0.01-0.11 11 700 
F4 S1 0.01-0.10 10 2,000 

 

B=1.3
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Sled Track Presto Video

Case S3




Slide # 9s

Sled Track Fuego Video

Case F1
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Predicted Environment
Ground deposition and air water vapor concentration 

predictions help locate instrumentation
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Impact Validation
• Tests performed in 2002 provided data for 

validating liquid spread dynamics for an 
aluminum tank impacting a concrete slab

• Liquid deposition, particle sizing, and video data
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Simulation Matrix
• Wind was not reported, so it was treated as a free 

parameter
• Geometry fidelity was examined, including 

undercarriage and cross-member for high fidelity
• Various temporal staging assumptions were 

analyzed

Case Geometry 
Fidelity 

Wind Temporal Staging 

1 Low No No 
2 Low No 5 times* 
3 High No 6 times** 
4 Low 2 m/s No 
5 Low 1 m/s No 
6 High No 11 times** 
7 High 1 m/s 11 times** 

* Dimensionless Staging Distance: 1.7 
** Dimensionless Staging Distance: 1.5 

Fluid Test Matrix
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Drop size and Spread Distance Results
• Simulation matrix evaluated transfer coupling, 

geometry fidelity, and wind assumptions  
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Liquid Deposition Results
• Geometry fidelity was found to be most 

significant, and coupling methodology was also 
important
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Simulation Videos
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The Scenario
Designed to help understand discretization 

sensitivities
• 23 cm cube of liquid in a 2.54 cm thick  aluminum 

tank with two adjacent squares
– Impact an immobile target at 182 m/s
– Presto modeled with SPH and 4 levels of 

refinement
• Open air environment with ground located 6.35 m 

below impact point
– Two levels of fluid 

mesh refinement
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Simulation Matrix
• Cases are named to indicate meshes used and 

staging assumptions
• Differences between cases reflect accuracies 

with discretization and staging
Case Fuego 

Mesh 
Presto 
Mesh 

Temporal 
Staging 

Dimensionless 
Spacing 

ccu coarse coarse No  
cmu coarse medium No  
cfu coarse fine No  
cxfu coarse xfine No  

cfs1.1 coarse fine Yes 1.1 
cfs1.3 coarse fine Yes 1.3 
cfs1.5 coarse fine Yes 1.5 

cfs1.5_18 coarse fine Yes* 1.5 
cfs1.7 coarse fine Yes 1.7 
mfs medium fine Yes 1.5 
mfu medium fine No  

mmu medium medium No  
*All staged cases use 1 ms steps out to 12 ms except this one, which uses 1 ms steps out to 18 ms. 
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Mass Results (1/2)
• Results are relatively similar, with subtle 

differences not well illustrated by line plots.
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Mass Results (2/2)
• Mass loss is slower for staged predictions
• Mass loss is faster for medium Fuego mesh
• Moderate trend depending on dimensionless 

spacing magnitude assumed
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Maximum Predicted Particles Results
• Staging appears to increase break-up
• Finer Fuego mesh yields more particles
• Dimensionless spacing significant to result
• Small to moderate effect of Presto resolution
• 18 ms case results in substantially more particles
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Coarse Video
• Case cfs1.5
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Medium Video
• Case mfs
• Substantial increase in resolution of the fireball
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Summary 
• A new capability exists to predict fires from impact 

scenarios involving code coupling.
• Model validation work is ongoing, with existing validation 

suggesting the accuracy of the capability.
• Modeling resolution assumptions including discretization 

and coupling transfer method are analyzed, and 
influence prediction results.

• This work provides confidence in being able to employ 
these capabilities for other similar scenarios.

• Future work includes additional validation and scenarios 
more closely related to the application space.
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Extra Viewgraphs 
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Properties 

Property Units Value 
Heat of Vaporization kJ/kg 310 
Boiling Temperature K 371.58 
Critical Temperature K 540.3 
Density kg/m3 692 
Thermal Conductivity W/m/K 0.15 
Specific Heat J/kg/K 2100 
Viscosity kg/m/s 0.000542
Absorptivity -- 0.05 
Surface Tension Nm 0.0216 
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Coupling Details 

Time (ms)
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Ground Deposit at 1.0 s
Deposit mass almost identical from 0.4 to 1.25 

seconds: early versus late deposit
• Any refinement mostly lowers deposit
• Dimensionless spacing has minor effect
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Sauter Mean Diameter
• No particular trends evident
• Uniformly, larger average drops predicted at later 

times
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