Hidden Fires – Contaminated Thermal Acoustic Insulation

Hidden Fires – Contaminated Thermal Acoustic Insulation

Some Relevant In-service Occurrences

Some Relevant In-Service Occurrences

L-1011, N753DA, NEWFOUNDLAND, CANADA, 17-MARCH-1991

Flames entered the cabin through a return air vent at the bottom of the interior side wall panel. The flames were reported to have extended approximately two feet above the cabin floor. A passenger's coat that was lying on the floor caught fire, as did a few smaller, personal items.

Beneath the cabin floor, the main generator cables from the number two engine and the cables from the APU were also severely burn-damaged. A wire bundle was also severely damaged.

Grease and tar residues appeared to have provided a bond, and the material (dust & lint) had accumulated to an average depth of approximately threeeighths of an inch with the depth in some areas exceeding two inches.

The material was on all wiring bundles, cables, lines, ducts, insulation blankets and other aircraft components and parts throughout the area. Samples from the lint and dust accumulation in the area were tested for flammability. These samples were found to support combustion and would serve as а source of fuel for a fire.

Some Relevant In-Service Occurrences

B767-300, C-GHML, TORONTO, CANADA, 13-MAY-2002

Boeing 767-300 May 2002

DUST AND LINT ACCUMULATION - INSULATION

The Master Warning Fire/Overheat light illuminated, the fire warning bell sounded, and the Aft Cargo Fire light illuminated.

The flight crew followed the procedures for a cargo fire and activated the cargo fire extinguishing system. An emergency was declared.

Boeing 767-300 May 2002 The fire was effectively extinguished even though it was beginning to spread up behind the right sloping sidewall of the aircraft, outside the cargo compartment. The last line of defence, the compartment liner that was designed to contain the fire, had been breached. The fire spread and increased in intensity until it was successfully detected and extinguished by the on-board system. TRANSPORTATION SAFETY BOARD **OF CANADA – AVIATION**

INVESTIGATION REPORT

Boeing 767-300 May 2002

The polyethylene terephthalate (PET) covering material of the thermal acoustic insulation was contaminated. The contaminated material provided an ignitable source of fuel for a self-sustaining fire.

Boeing 767-300 May 2002

The contamination consisted of soiled insulation blankets and of flammable debris in the form of paper, candy wrappers, Styrofoam packing peanuts, small polyethylene beads, and rubber powder from a **Power Drive Unit.**

CONTAMINATED INSULATION BLANKETS

TRANSPORTATION SAFETY BOARD OF CANADA – AVIATION INVESTIGATION REPORT

Hidden Fires – Contaminated Thermal Acoustic Insulation

Threat Mitigation

Threat Mitigation

Much work has already been carried out by the industry in providing guidance to aircraft operators on the maintenance practices to be adopted to reduce the fire threat from contaminated Thermal Acoustic Insulation materials. The industry initiatives introduced the Enhanced Zonal Analysis under Procedures would seem to provide a practical way forward in mitigating the threat from the majority of in-service contaminants Of Thermal Acoustic Insulation materials.

Threat Mitigation

However, Transport Canada are carrying out research intended to identify the primary Thermal Acoustic Insulation contamination threats and propose improvements that might be considered to the current mitigation strategies

Hidden Fires – Contaminated Thermal Acoustic Insulation

Transportation Safety Board of Canada - Recommendations

Transportation Safety Board of Canada - Recommendations

Canadian TSB Recommendation A02-05 (14 November 2002) stated as follows:

"The Department of Transport take action to reduce the short term risk and eliminate the long term risk of contaminated insulation materials and debris propagating fires, and coordinate and encourage a similar response from other appropriate regulatory authorities."

Transportation Safety Board of Canada - Recommendations

TSB has classified this Recommendation as "Inactive":

"As the safety deficiency associated with Recommendation A02-05 is considered rectified, no further action is necessary. This deficiency file is assigned an Inactive status."

Transportation Safety Board of Canada - Recommendations

However, Transport Canada has made the following statement to TSB:

"The International Aircraft Materials Fire Test Working Group (IAMFTWG) has formed an industry Task Group to recommend means for reducing the risk of hidden in-flight fires from contaminated or aged TAI."

Transportation Safety Board of Canada - Recommendations

As part of its activities, the Task Group has:

- Performed an airline contamination survey
- Investigated the flammability of contaminants commonly found on Thermal Acoustic Insulation

Hidden Fires – Contaminated Thermal Acoustic Insulation

Task Group - Airline Contamination Survey

Contaminants based on Boeing Airline Survey

Contaminants found in the vicinity of in-service hidden fires

Hidden Fires – Contaminated Thermal Acoustic Insulation

Testing

Thermal Acoustic Insulation Contamination

FAA Radiant Panel Test

TCR 00:35.31.29 PLAY LOCK

Thermal Acoustic Insulation Contamination

Transport Canada Arc Fault Test Rig

Transport Canada – Arc Fault Test Rig

Transport Canada – Arc Fault Test Rig

Test Results -Transport Canada Arc Fault Test Rig

Test results for some of the more frequent contaminants of Thermal Acoustic insulation

Р	Pass
F	Fail
	Not Tested

Testing and Proposed Mitigation

Corrosion Inhibiting Compounds - 5 CICs have been tested on the Transport Canada Arc Fault Test Rig to date

Contamination Testing -Corrosion Inhibiting Compounds

Testing for contamination with CIC - A (Non-Waxy CIC)

TAI LINER MATERIAL	ARC FAULT TEST RIG			RADIANT PANEL	
9914 /Tables 8/10	Ambient	100° C	200° C	Boeing	Airbus
Material A	Р	Р	F		
Material B	Р	Р	F		
Material C	Р	Р	Р		
Material D		Р	F		
Material E		Р	F		

Testing for contamination with CIC - E (Waxy CIC)

TAI LINER MATERIAL	ARC FAULT TEST RIG			RADIANT PANEL	
9914 /Tables 8/10	Ambient	100° C	200° C	Boeing	Airbus
Material A	F	F	F		
Material B					
Material C					
Material D					
Material E	F	F			

CICs Proposed Mitigation

It is recommended that:

- The use of less flammable Corrosion Inhibiting Compounds may result in a more dependable means of flammability threat reduction than scheduled cleaning tasks.
- Consultation with Corrosion Inhibiting Compound manufacturers might also be undertaken to determine the feasibility of developing effective Corrosion Inhibiting Compounds with improved flammability characteristics.

Testing and Proposed Mitigation

Cleaning Fluids

Contamination Testing – Cleaning Fluids

All 3 Cleaning Fluids tested exhibit relatively benign flammability properties

Testing and Proposed Mitigation

Hydraulic Fluid

Contamination Testing – Hydraulic Fluid

Testing for contamination with Hydraulic Fluid

TAI LINER MATERIAL	ARC FAULT TEST RIG			RADIANT PANEL	
9914 /Tables 8/10	Ambient	100° C	200° C	Boeing	Airbus
Material A		Р	Р		
Material B		Р	Р		
Material C		Р	Р		
Material D		Р	Р		
Material E		Р	Р		

In Service Aircraft Contaminated with Hydraulic Oil

Contamination Testing – Hydraulic Fluid

Testing for contamination with Hydraulic Fluid

TAI LINER MATERIAL	ARC FAULT TEST RIG			RADIANT PANEL	
9914 /Tables 8/10	Ambient	100° C	200° C	Boeing	Airbus
Material A		Р	Р		
Material B		Р	Р		
Material C		Р	Р		
Material D		Р	Р		
Material E		Р	Р		

Testing for contamination with Hydraulic Fluid in the Fibreglass

TAI LINER MATERIAL	ARC FAULT TEST RIG			RADIANT PANEL	
9914 /Tables 8/10	Ambient	100° C	200° C	Boeing	Airbus
Material A					
Material B					
Material C					
Material D					
Material E	F	F	F		

Hydraulic Fluid Proposed Mitigation

It is recommended that:

• Further consideration is given to Aircraft Maintenance Manual recommendations regarding the in-service repair and replacement of TAI materials.

Testing and Proposed Mitigation

Dust & Lint

In Service Aircraft Contaminated with Dust & Lint

Contamination Testing Dust & Lint

Dust & Lint –

from an in-service Aeroplane undergoing Maintenance

Testing for contamination with Dust and Lint

TAI LINER MATERIAL	ARC FAULT TEST RIG			RADIANT PANEL	
9914 /Tables 8/10	Ambient	100° C	200° C	Boeing	Airbus
Material A	F	F	F		
Material B					
Material C					
Material D					
Material E					

Dust & Lint Proposed Mitigation

- It is recommended that:
- Further consideration is given to the rate of accumulation of Dust/Lint on in-service aircraft in order to ascertain whether the frequency of cleaning currently proposed will adequately mitigate the in-flight fire threat.

Hidden Fires – Contaminated Thermal Acoustic Insulation

Way Forward

Recommendations on Way Forward

1. The findings on contaminated Thermal Acoustic Insulation contamination are to be presented to the International MRB Policy Board (IMRBPB) and the Maintenance Programme Industry Group (MPIG) for their advice regarding the proposed mitigation

(MRB Maintenance Review Board)

Recommendations on Way Forward

- 2. Transport Canada with the support of the UK CAA are to commission surveys of inservice aeroplanes to:
 - Determine the extent of TAI contamination and quantify the threat by carrying out testing
 - Assessing the rate of change of the threat with time from last cleaning
 - Assessing what factors influence the magnitude of the threat

