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The drive to greater energy density and efficiency 
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 Increased energy densities and other material advances 
lead to more reactive systems – greater efficiency / less 
losses. 
 Charged batteries include a ‘fuel’ and ‘oxidizer’ all internally. 

  Li-Ion electrolyte, 
packaging, and 
other materials are 
often flammable. 

 External heating or 
internal short 
circuits can lead to 
thermal runaway. 

 

 



 

 Failure rates as low as 1 in several 
million,  

 But number of cells used in 
energy storage is potentially huge 
(billions). 

 Moderate likelihood of 
‘something’ going wrong,  

 Need to design against many 
possibilities. 

 

 A single cell failure that propagates 
through the pack could lead to an 
impact even with very low individual 
failure rates 
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www.nissan.com 

www.internationalbattery.com 

www.samsung.com 

www.saft.com 

Validated reliability and safety is one of four critical 
challenges identified in 2013 Grid Energy Storage 
Strategic Plan 

http://www.nissan.com/
http://www.internationalbattery.com/
http://www.samsung.com/


 Comprehensive abuse testing platforms for safety and reliability of cells, 
batteries and systems from mWh to kWh 

 Mechanical abuse  
 Penetration 
 Crush 
 Impact 
 Immersion 

 Thermal abuse 
 Over temperature 
 Flammability measurements 
 Thermal propagation 
 Calorimetry 

 Electrical abuse 
 Overvoltage/overcharge 
 Short circuit 
 Overdischarge/voltage reversal 

 Characterization/Analytical Tools 
 X-ray computed tomography 
 Gas analysis 
 Surface characterization 
 Optical/electron microscopy 

 
 

Battery Abuse Testing Laboratory (BATLab) 



Crosswind Test Facility (XTF) 

Controlled Crosswind Configuration  

FLAME and RADIANT HEAT 

 Required size for validation 

 Radiant heat w/convective control 

Additional  

40-sq.-ft. Radiant 

Heat Test Cell 

Thermal Test Complex 

A Case-Study for Experimental Design 
Thermal Test Complex 



Abuse Testing 
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Chinese Pouch Cell Overcharge Test 
PL-1290142_02 January 26, 2011

Current Voltage TC2

Internal resistance increase 

Dielectric breakdown 
of separator  internal short 

Thermal runaway 

(Internal temperature limited due to ejection of cell contents) 

50 Wh cell in 8’ containment 
50 kWh battery failure -- 50 MWh battery failure? 

 Potential heat release can 
exceed stored energy. 

 Potential cascading failure to 
other cells 

12 Ah (~50 Wh) Cell Overcharge Abuse 



Approaches to designing in safety 

The current approach is to test our way into safety1 

 Large system (>1MWh) testing is difficult and 
costly. 
 

Consider supplementing testing with predictions of 
challenging scenarios and optimization of mitigation. 

 Develop multi-physics models to predict failure 
mechanisms and identify mitigation. 

7 1 ‘Power Grid Energy Storage Testing Part 1.’ Blume, P.; Lindenmuth, K.; Murray, J. EE – Evaluation Engineering. Nov. 2012. 

 Build capabilities with 
small/medium scale 
measurements. 

 Still requires some testing and 
validation. 



 

 

• Leverage the large DOE-NNSA Investments in Sierra-Mechanics Integrated 
Code simulation tools developed at Sandia National Laboratories under the 
Advanced Scientific Computing (ASC) program for Science-based Stockpile 
Stewardship by applying these tools to battery safety analysis 

Heat transfer mechanisms in a fire 

Physics: 
 
• Turbulent fluid mechanics (buoyant 

plumes) 
• Participating Media Radiation (PMR) 
• Reacting flow (hydrocarbon, particles, 

solids) 
• Conjugate Heat Transfer (CHT) 
• The simulation tool predicts the 

thermal environment and object 
response 

 

How do we evaluate thermal runaway in realistic 
scenarios? 



Core Capabilities 
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Sierra/Fuego Sierra/Aria 

Low-Mach fire simulations with particle 

transport and thermal radiation 

Thermal transport simulations with 

various energetic material models 

• Fully resolved chemistry 

• Lower order level set burn 

propagation 

• Gas production and pressure 

calculation 



Development of heat release models from 
calorimetry measurements 
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 Calorimetry measurements inform and calibrate models for heat release 
rates.  

 Here cathode heat release models are evaluated based on literature 
measurements. 

 These heat release models are in our codes and used in subsequent 
predictions. 

 

 Measurement from:  MacNeil, D. D. and J. R. Dahn (2001). Journal of Physical Chemistry A 105(18): 4430-4439. 

 Models based on Spotnitz, R. and J. Franklin (2003). Journal of Power Sources 113(1): 81-100. 
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• SEI decomposition 
 

• Cathode-electrolyte 
 

• Electrolyte-salt 
 

• Anode-electrolyte 
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Modeling thermal runaway in lithium ion cells 

 Evolution simulated using calorimetry-derived heating rates and 
lumped thermal mass. 

 Consider SEI decomposition, cathode-electrolyte reaction, electrolyte 
decomposition, anode-electrolyte reaction 

 Hot environment modeled as an ambient temperature. 

 Bound thermal runaway versus heat dissipation. 
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Max temp. predicted versus 

environment (oven) temp.  

Temp. evolution two environ. 

temps., two cathode materials 

• If you have good low-temperature calorimetry for your specific 
chemistry and can adequately model the heat transfer, predictions of 
initial runaway are achievable. 



Thermal runaway occurs if  
heat release exceeds heat losses 
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• Predicted heating rates based on ARC measurements. 

• Higher environment temperature leads to thermal runaway. 

• Low temperature degradation occurs in both cases.  
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Thermal runaway occurs if  
heat release exceeds heat losses 
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• Criterion for self heating: 
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Focus mitigation on 

shallow-sloped regions! 
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• Results show a nearly linear relationship between total heat release (kJ) and cell SOC – similar to 
data for cell size this suggests that failure enthalpy is based largely on the stored energy 
available 

• Heat release rates (e.g. runaway reaction kinetics) follow an almost exponential relationship 
with cell SOC – again this is traditionally thought to cause a greater risk of thermal runaway 

• Could a runaway still occur with large numbers of low SOC cells or cells in well insulated 
conditions? 

Impact of SOC on Runaway – Josh Lamb Expts. 
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Increasing stored energy (SOC) leads to  
exponentially faster heat release rates 
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• Fully charged cells observed to undergo 
more violent exothermic reactions. 

• Charged fraction of cathode and anode 
are reactive component. 

• CoO2 vs LiCoO2; LiC6 vs C6   
• Greater heat release associated with 

greater fractions of active material 
(greater SOC). 
 

• Higher temperatures give exponentially 
greater heat release due to  
Arrhenius rate constants. 



Failure of a single cell can propagate to rest of pack 
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Experimental propagation in 

5 stacked pouch cells 

Lamb, J., et al. (2015). Journal of Power Sources 283: 517-523. 



Cascading propagation across multiple (5) cells 
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Interstitial temperatures 

Pack Voltage 

• Prediction and mitigation of cell-to-cell 
propagation is key to addressing risk.  

• Here simulating propagation across 
series of pouch cells.   

• Accurate measurements of highest 
temperature kinetics unavailable and 
need to be calibrated to get 
agreement. 

 

Lamb, J., et al. (2015). Journal of Power Sources 283: 517-523. 



Sensitivity of propagation rate to high-T kinetics 

• Multiply low and high temperature rates by 10x. 
• Accelerated low-T rates has negligible effect. 
• Accelerated high-T rates has first-order effect (anode Li-

electrolyte reaction). 

10x high-T 

Li-electrolyte rxn 

Baseline and  

10x low-T 

SEI decomp rxn 



Pulsating Propagation at large scales 
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• Extend modeling to large 
scales at small cost relative 
to measurements. 

• Here predictions include 
multi-step mechanism 
involving anode, cathode, 
electrolyte reactants. 

• Pulsating front speed 
observed. 

 

• Propagation across a 
large pack (128 cells 
here) exhibits pulsating 
instabilities.  

• Note heating rate varies 
by 100x (log scale). 
 

 



Pulsating Propagation at large scales 

21 

• Extend modeling to large 
scales at small cost relative 
to measurements. 

• Here predictions include 
multi-step mechanism 
involving anode, cathode, 
electrolyte reactants. 

• Pulsating front speed 
observed. 

 

• Propagation across a 
large pack (128 cells 
here) exhibits pulsating 
instabilities.  

• Note heating rate varies 
by 100x (log scale). 
 

 

2011 Chevy Volt Latent Battery Fire 
at DOT/NHTSA Test Facility 



The mechanism of pulsating propagation  
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• Heat released is conducted upstream of reaction front, increasing the total 
enthalpy (sum of sensible and chemical enthalpy) 
 

• Front propagates rapidly through preheated region with larger HTOT. 
 

• Slow propagation (low Temp), but 
preheating mixture ahead of 
reaction front. 
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Parameter studies of propagation at large scales 
are possible with models 
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• Prediction and 
mitigation of cell-to-
cell propagation is key 
to addressing risk.  

• Single-step heat-
release predictions 
with a range of heat 
release and boundary 
temps. 

• Propagation across a 
large pack (80 cells 
here) exhibits 
pulsating instabilities.  

 
 

 



In closing 

 Thermal runaway is a risk and potential barrier to development 
and acceptance. 

 Heat release rates are moderate relative to potential dissipation. 

 Heat release rates scale exponentially with SOC – net heat 
release. 

 Identification of thermal ignition criterion and sensitivity to low 
temperature rates. 

 Cell-to-cell propagation along homogenized pack structures 
exhibits pulsating behavior, depending on total enthalpy 
transport. 

 Quality measurements are key to parameter identification. 
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