Hot Surface Ignition Apparatus for Aviation Fluids

1

N. Albert Moussa, Kulbhushan Joshi, Kevin Vier and Tensin Nanchung BlazeTech Corp., 29B Montvale Ave., Woburn, MA

&

Gregory Czarnecki USAF AFMC, 96 TG/OL-AC, WPAFB Presented at FAA 8th Triennial International Aircraft Fire and Cabin Safety Research Conference Atlantic City, NJ

Oct. 24-27, 2016

Outline

- Background
- Difficulty of measuring hot surface ignition
- BlazeTech Approach
- Experimental setup
- Test results

Background

Auto Ignition Temperature (AIT)

Hot Surface Ignition Temperature (HSIT)

Factors Affecting HSIT

- Hot surface
 - Material (catalytic), geometry, dimensions, orientation, shape, thermal mass, thermal properties, presence of obstacles
- Fluid
 - Composition, presence of contaminants, thermophysical properties, Leindenfrost effect, ignition kinetics
 - Rate and amount of fluid injection
- Environment
 - Air pressure, temperature and velocity (direction, flow regime, boundary layer dimensions relative to liquid drop)

Hot Surface Ignition Temp. from Various Sources

Challenges in HSIT Measurements – *Temperature Variation with Time During Tests*

AFWAL-TR-88-2101

BlazeTech Approach to Measuring HSIT

- Design an apparatus with:
 - -Flat horizontal plate with simplest flow field (buoyancy)
 - Minimize quenching so that
 - $T_{surface}$ (before liquid injection) ~ $T_{surface}$ (at ignition)
- Requirements:
 - Low injected volume (20 to 300 μ L used micropump)
 - Plate must have high thermal mass and high thermal diffusivity ($\alpha_{SiC} >> \alpha_{Stainless steel}$)

Plate with Step vs. Flush Plate

Velocity Contours

Temperature Contours

Surface Temperature Distribution of Plate

Surface vs. Internal (7mm) Temperature

Steady state 1-D heat transfer analysis (infinite slab of SiC) Surface emissivity ϵ is grey Heat transfer coefficient and $\epsilon = f(T)$

Photos of Test Setup

Test Parameters

- n-Decane
- Initial tests:
 - Injected volume 20 to $300 \ \mu$ L, instantaneously (0.2 s), injection tip diameter: 0.8 mm, injection tip distance from plate: 20 cm
 - Transition from individual droplet to stream 50 to 60 μl
- Variations of test parameters:
 - Flow rates of 3 to 30 ml/min, injection duration to 7.8 s, injection tip diameter: 0.6 mm, injection tip distance from plate: 50 cm

Probability of Ignition 5 Repeat Tests

Temperature criteria for Ignition: Probability > 50%

HSIT vs Injected Volume

Temperature criteria for Ignition: Probability > 50%

Effect of Injection Flowrate

MHSIT vs Duration of Injection

Effect of Distance from Injection Tip to Plate

Summary of Variations in Test Parameters

- Adding an enclosure decreases the HSIT significantly
- Increasing the tip-to-hot plate distance from 20cm to 50cm decreases the HSIT by 20 °C – effect decreases with increase in volume
- Placing a 3 ft (1 m) diameter screen around the hot plate mostly raised the HSIT by 5°C
- Changing the fuel injector tip diameter from 0.8 to 0.6 mm (at 50cm) produced the same HSIT within ±5°C.

Closure

• HSIT for n-Decane on a flat horizontal plate in a buoyancydriven flow is given by:

Where HSIT in °C

Volume in μL

- Results consistent with HSIT=650 °C by Kuchta, 1985
- Test parameters scoped out but need to be quantified

Thank you for listening

Questions?

