

Prospects for Safer Batteries for Transportation

Aron Newman¹ and Grigorii Soloveichik²

1 ARPA-E Support Service Contractor Employee 2 Program Director, ARPA-E

Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference October 28-31, 2019 Atlantic City, New Jersey

Drivers for next generation batteries

Safety

First utility scale battery fire in US (Surprise, AZ) At least 21 fires have already occurred at utility battery projects in South *Korea* (BloombergNEF) Tesla burns in crash, killing driver and 'keeps catching fire' at tow yard; February 24, 2019, Davies, Florida

- Energy density- quest for 500 Wh/kg
 - Not possible without Li metal anode and conversion cathode or liquid fuel

Solid state electrolyte chronological development

Chem 5, 1–33, April 11, 2019

BNEF Technology Timeframe

Source: Bloomberg NEF and company interviews

Main lithium cycling issues in solid state battery

- Dendrite formation/battery shorts
- Li segregation/non-uniformity
- Soft shorts/defects
- Mossy lithium plating/loss of Li
- Anode (and cathode) volume change
- Plating on other conducting surface
- High ASR/thick membrane
- Interfacial resistance growth/chemical reactions
- Solid catholyte/high resistance

Four key metrics to evaluate lithium cycling

Plating current density, mA cm⁻²

P. Albertus, S. Babinec, S. Litzelman & A. Newman *Nature Energy*, **3** (2018) 16–21

RANGE program goal: more robust battery

Energy Density of Battery Chemistry cell

IONICS: Integration and Optimization of Novel Ion-Conducting Solids

IONICS program mission

Create <u>solid separators</u> for electrochemical cells using solid ion conductors to enable transformational performance and cost improvements in electrochemical cells.

Block dendrites

Li metal

Category 1: Li⁺ conductors to enable the cycling of Li metal

IONICS program goal: overcome property tradeoffs to create transformational components

Current status: tradeoffs among properties of ion conductors prevent electrochemical cell improvements **IONICS program:** from the beginning seek to overcome fundamental property tradeoffs

IONICS is focused on the separator component

Typical ARPA-E program

<u>Device metrics:</u> W/kg, Wh/kg, \$/kW, \$/kWh, durability, mA/cm² at a given V, etc.

IONICS program

<u>Component metrics in the</u> <u>device context:</u> Selectivity, stability, separator and interfacial ASR, dendrite resistance, \$/m². **IONICS Plus program**

<u>Device metrics:</u> W/kg, Wh/kg, \$/kW, \$/kWh, durability, mA/cm² at a given V, etc.

Success in the separator development allowed for building full batteries

IONICS

16 Project Teams • 3 Technology Areas

Category 1: Li⁺ conductors to enable the cycling of Li metal

OPEN, RANGE Battery related projects

UNIVERSITY OF

MICHIGAN

Stanford

University

MARYLAND ionic

Stanford University PI: Fu Kuo Chang

Solid Power PI: Doug Campbell

The company is working closely with Ford, BMW and others toward meeting industry performance, scale, and cost goals.

University of Maryland PI: Wachsman

Polyplus Battery Company PI: Visco

Univ. Calif. San Diego PI: Liu

University of Michigan PI: Sakamoto

Robust 80 micron electrolyte enables 10 mA/cm²

- Critical current density increases with temperature
- Tile structure addresses challenge with brittle ceramics during processing
- Engineered surfaces enable < 15 Ω.cm2 ASR produced with a scaleable process

University of Maryland PI: Wang

Free H₂O molecular Interaction of TFSI Primary Solvation Sheath ${[Li(H_2O)_4](H_2O)_4}+nH_2O n \ge 1$ Li (H2O)25-TFSI Salt-in-Water Water-in-Salt LMO/LTO Capacity ratio: 1.14 Electrolyte: 9.5M LITESI-10 15 20 25 30 35 40 45 50 55 60 5 Capacity(mAh/g X-H₂O Areal capacity: 0.5 mAh/cm² Discharging Rate: 0.5 C

10 20 30 50 60 Cycle Number

Oak Ridge Nat. Lab. **PI: Dudney**

- Higher processing temperature improves ionic conductivity
- Large scale sputtering is a viable option.
- Powders of oxynitride glass provide alternative processing.
- Will a dense, sintered glass membrane effectively resist Li filaments and dendrites?

2.8-

2.6

2.4

2.0-

1.8

1.6

1.4

80

60

40-

20-

0

Capacity(mAh/g LTO+LMD)

Voltage(V) 2.2

24 M PI: Chang

 Composites operating in newly-identified region of stability have been successfully synthesized, applied to separators, and interfaced with lithium metal.

Ionic Materials PI: Zimmerman

- Up to 1.3 mS/cm at room temperature
- Lithium transference number of 0.7
- High voltage capability (5 volts)

Four key metrics to evaluate lithium cycling

Current status

Engineering Trade: Power & Energy

- Solid-State batteries could provide both power and energy that exceeds lithium ion.
- Performance is at 100C but lower temperatures are possible with improved ionic conductivity.
 COPO

CHANGING WHAT'S POSSIBLE

Energy Storage Beyond Batteries

- Heavy duty and long haul transportation require energy density provided by fuel cells

 will still need battery hybridization for power.
- Future ICE vehicles could be powered by non-carbon fuels, e.g. H₂ or NH₃

Conclusions

- The Advanced Research Project Agency Energy (ARPA-E) has been funding battery projects that address the need for low cost energy storage for transportation since its inception a decade ago.
- More recent programs are RANGE and IONICS.
- Progress has been made with various battery chemistries and cell designs, including aqueous batteries and solid state electrolytes.
- Developing load bearing batteries that require less safe guards allows for lower energy density, while still achieving the vehicle's targeted range.

