Objective

• The objective of the study is to determine if and how the heating rate affects the thermal runaway event

• The gases were collected and analyzed for percent hydrogen, carbon monoxide, carbon dioxide, oxygen, and total hydrocarbon content (THC)

• The maximum temperature rise and peak pressure rise were annotated
Scope of Test

<table>
<thead>
<tr>
<th>Heating Rate, °C/min</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>18650 LiCoO₂ 3.7V
2600mAh 30% SOC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pouch Cell LiCoO₂ 3.7V
2500mAh 30% SOC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

- 21.7L pressure vessel
Test Equipment

- Experiments were conducted in a 21.7 liter stainless steel pressure vessel
- Gas chromatography (GC) with thermal conductivity detector (TCD) to measure H2
- Paramagnetic sensor (pO2) to measure CO/O2
- Non-dispersive infrared radiation (NDIR) to measure CO2
- Flame ionization detector (FID) to measure total hydrocarbon content (THC)
Test Procedure

• The pressure vessel is vacuumed to less than 0.1 psia
• The pressure vessel is filled to 14.7 psia with nitrogen gas
• Nitrogen gas is used because of its inert properties and to prevent interference with the gas analyzers
• The battery is forced into thermal runaway by overheating and the vent gases are released
• More nitrogen is added to the pressure vessel until the pressure reaches 18 psia, this creates a positive pressure to feed into gas analyzers
• The samples are analyzed for gas composition
Test Procedure

• The batteries were heated at various heating rates until the cell case reached 200°C and were held at 200°C for 180 minutes or until thermal runaway occurs

• The battery cells were wrapped in a flexible heater

• Temperature was measured at the vertical center of the cell case

• The temperature heating rate was controlled by a Proportional-Integral-Derivative (PID) controller

No battery holder setup
Heat Rate and Case Temperature

• The heating rate is controlled with a Proportional-Integral-Derivative (PID) controller
 • The heat rates were reproducible
 • Some degree of thermal lag
 • Analysis starts with assumption of perfect heat rate
Thermal Runaway Onset Temp

• **There was not a statistical difference in the thermal runaway onset temperature** for heating rates below 15°C/min ($M=158$, $SD=12$) and heating rates at or above 15°C/min ($M=150$, $SD=9$); $t(20)=1.8$, $p = 0.086$.

• These results suggest that heating rate do not have an effect on the thermal runaway onset temperature, $p > 0.05$.
• There was a **significant difference** in the maximum thermal runaway case temperature for heating rates below 15°C/min ($M=228$, $SD=35$) and heating rates at or above 15°C/min ($M=288$, $SD=54$); t (20) =3.1, $p = 0.0053$

• **8/10 tests** (80%) at or above 15°C/min yielded case temperatures above 250°C

• **5/12 tests** (42%) below 15°C/min yielded case temperatures above 250°C

<table>
<thead>
<tr>
<th>Heat Rate (°C/min)</th>
<th>Cell Case Temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>182, 184, 205, 213</td>
</tr>
<tr>
<td>10</td>
<td>200, 260, 259, 225</td>
</tr>
<tr>
<td>15</td>
<td>266, 225, 232, 295</td>
</tr>
<tr>
<td>20</td>
<td>344, 339, 289, 212</td>
</tr>
<tr>
<td></td>
<td>252, 212, 200, 268</td>
</tr>
<tr>
<td></td>
<td>310, 313, 357</td>
</tr>
</tbody>
</table>

Heat Rate and Cell Case Temperature
There was a significant difference in the volume of the vent gas for heating rates below 15°C/min ($M=0.38$, $SD=0.055$) and heating rates at or above 15°C/min ($M=0.57$, $SD=0.14$); $t(20)=4.3$, $p=0.0003$.

7/10 tests (70%) at or above 15°C/min yielded greater than 0.5L of vent gas.

1/12 tests (8%) below 15°C/min yielded case temperatures above 0.5L of vent gas.
A violent reaction is defined as maximum temperature above 250°C and over 0.5L of vent gas release.

- 0/5 tests (0%) at 5°C/min had a violent reaction.
- 1/7 tests (14%) at 10°C/min had a violent reaction.
- 3/5 tests (60%) at 15°C/min had a violent reaction.
- 4/5 tests (80%) at 20°C/min had a violent reaction.
Heat Rate and Violent Reactions

• Mix of standard and violent thermal runaway events with heat rates between 12.8 and 16.4°C/min
 • Testing above 16.4°C/min will yield a violent reaction (93%) of tests
 • Testing below 12.8°C/min will yield a standard reaction (93%) of tests

• The true heat rate was measured with the slope of a case temperature vs time graph from 30 to 140°C
Heat Rate and Violent Reactions

• The average heat rate for a standard thermal runaway reaction was 10.1°C/min (SD=4.2 °C/min)
 • High range of 1.5SD is 16.4°C/min
 • Testing above 16.4°C/min will yield a violent reaction (93%) of tests
• The average heat rate for a violent thermal runaway reaction was 16.2°C/min (SD=2.3°C/min)
 • Low range of 1.5SD is 12.8°C/min
 • Testing below 12.8°C/min will yield a standard reaction (93%) of tests
• Testing between 12.8 and 16.4°C/min will result in a mix of standard and violent thermal runaway reactions
The slower heating rate allows more time for the electrolyte inside of the cell to boil and vent.

The faster heating rate brings the battery cell into thermal runaway at a faster rate.

Therefore, more of the electrolyte remains to be used as a form of potential energy.
Battery Vent Gas

• The mean difference in vent gas volume was 0.27L (53.5%) with a 95% confidence interval ranging from 0.22 and 0.31L.

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>14</td>
<td>0.37</td>
<td>0.028</td>
<td>0.007</td>
</tr>
<tr>
<td>Violent</td>
<td>8</td>
<td>0.64</td>
<td>0.070</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Battery Vent Gas, L

- Standard Thermal Runaway Vent Gas Volume, L
- Violent Thermal Runaway Vent Gas Volume, L
Max Battery Case Temperature

• The mean difference in the maximum battery cell case temperature was 92.0°C (34.3%) with a 95% confidence interval ranging from 64.9 and 119°C.

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>14</td>
<td>222</td>
<td>28.6</td>
<td>7.64</td>
</tr>
<tr>
<td>Violent</td>
<td>8</td>
<td>314</td>
<td>30.5</td>
<td>10.8</td>
</tr>
</tbody>
</table>
Percent Pressure Rise, %

- The mean difference in percent pressure rise was 3.11% (48.4% difference) with a 95% confidence interval ranging from 1.69 and 4.54%.

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>n</th>
<th>Percent Pressure Rise, %</th>
<th>Mean</th>
<th>SD</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>14</td>
<td></td>
<td>4.88</td>
<td>0.46</td>
<td>0.02</td>
</tr>
<tr>
<td>Violent</td>
<td>8</td>
<td></td>
<td>8.00</td>
<td>2.52</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Total Volume of Hydrogen, L

• The mean difference in total volume of hydrogen was 0.045L (101%) with a 95% confidence interval ranging from 0.037 and 0.053L.

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>11</td>
<td>0.022</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>Violent</td>
<td>5</td>
<td>0.067</td>
<td>0.011</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Total Volume of Carbon Dioxide, L

• The mean difference in total volume of carbon dioxide was 0.16L (110%) with a 95% confidence interval ranging from 0.12 and 0.20L.

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>6</td>
<td>0.063</td>
<td>0.015</td>
<td>0.006</td>
</tr>
<tr>
<td>Violent</td>
<td>4</td>
<td>0.22</td>
<td>0.040</td>
<td>0.020</td>
</tr>
</tbody>
</table>
Le Chatelier’s Mixing Rule and LFL

• **Lower Flammability Limit (LFL)** is the minimum concentration of a fuel in an oxidizer that will ignite. *Less fuel will be too lean to ignite.*

1. Calculate the constituents of the mixed gas neglecting the presence of air.
2. Create binary gases by combining part of or all of a nonflammable gas with one or more flammable gas and recalculate gas constituents.
3. Record the flammability limits of the mixtures constituents from tables or curves.
4. Calculate the flammability limits of the mixed gas using Le Chatelier’s mixing rule equation

\[
L = \frac{100}{\frac{p_1}{N_1} + \frac{p_2}{N_2} + \frac{p_3}{N_3} + \ldots}
\]

Where \(L \) is either the LFL or the UFL of the gas mixture, \(p_1, p_2, p_3 \ldots \) are the percentages of the mixtures constituents, and \(N_1, N_2, N_3 \ldots \) are either the LFL or UFL of the individual constituents [1].

Note that if the constituents do not add up to 100 percent, one could substitute the actual total percentage.
Le Chatelier’s Mixing Rule

- The gas concentrations used for the calculation of the lower flammability limit were measured and averaged. The results are tabulated.
- The lower flammability limit (LFL) can be calculated using Le Chatelier’s Mixing Rule.

<table>
<thead>
<tr>
<th>Gas Specie</th>
<th>Standard Thermal Runaway, %vol</th>
<th>Violent Thermal Runaway, %vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon dioxide</td>
<td>17.33±2.91</td>
<td>34.92±2.71</td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>4.71±0.41</td>
<td>3.84±0.39</td>
</tr>
<tr>
<td>ethane</td>
<td>0.27±0.05</td>
<td>0.46±0.16</td>
</tr>
<tr>
<td>ethylene</td>
<td>2.16±0.45</td>
<td>1.67±0.24</td>
</tr>
<tr>
<td>hydrogen</td>
<td>5.98±0.86</td>
<td>10.25±0.70</td>
</tr>
<tr>
<td>methane</td>
<td>1.02±0.28</td>
<td>1.27±0.35</td>
</tr>
<tr>
<td>propane</td>
<td>0.10±0.01</td>
<td>0.14±0.07</td>
</tr>
<tr>
<td>propylene</td>
<td>0.07±0.01</td>
<td>0.26±0.18</td>
</tr>
</tbody>
</table>

± confidence intervals based off of a 95% confidence interval
Le Chatelier’s Mixing Rule, LFL

- The LFL is calculated to be **21.2%** for a violent thermal runaway and **27.7%** for a standard thermal runaway event.

- The violent thermal runaway vent gas is a more flammable mixture than the standard thermal runaway vent gas.

- With the calculated LFL and the measured volume of vent gas, we can estimate the maximum volume that will become flammable during a thermal runaway event.

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>Calculated LFL</th>
<th>Volume Vent Gas per Event, L</th>
<th>Max Potentially Flammable air mixture, L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>27.7±0.67%</td>
<td>0.37±0.01</td>
<td>1.34±0.06</td>
</tr>
<tr>
<td>Violent</td>
<td>21.2±0.74%</td>
<td>0.64±0.05</td>
<td>3.02±0.24</td>
</tr>
</tbody>
</table>

± confidence intervals based off of a 95% confidence interval
Conclusion

• Heat rates below 13°C/min were likely to cause a standard thermal runaway reaction while heat rates above 16°C/min were likely to cause a more violent thermal runaway reaction.

• A violent thermal runaway reaction is marked by:
 • Greater volume of vent gas (53% difference)
 • More flammable vent gas (27% difference)
 • Greater maximum cell case temperature (34% difference)
 • Greater percent pressure rise (48% difference).

• Whether or not a violent thermal runaway reaction occurs in an 18650 cell depends on how much electrolyte is boiled and vented prior to thermal runaway.

• The heat rate does not affect the thermal runaway onset temperature.
Test Procedure

• The batteries were heated at various heating rates until the cell reached 200°C and held at 200°C for 180 minutes or until thermal runaway is induced

• The battery cells were placed on top of a flexible heater

• Temperature was measured at the various locations

• The temperature heating rate was controlled by a Proportional-Integral-Derivative (PID) controller
The heating rate is controlled with a Proportional-Integral-Derivative (PID) controller.

Although the PID controller yielded mostly reproducible results, there were slight variances in the actual heat rate. This is especially true at high heat rates because of thermal lag. The actual heat rate was measured with the slope of the cell case temperature vs time graph from 30 to 140°C.
Heat Rate and Case Temperature

• A simple linear regression was calculated to predict maximum cell case temperature based on heat rate.

• A non-significant regression equation was found ($F(1,9)=0.56$, $p=0.47$), with a R^2 of 0.06

$$y = 0.88x + 383.5$$
A simple linear regression was calculated to predict vent gas volume based on heat rate.

A significant regression equation was found ($F(1,10)=18.24$, $p=0.0016$), with a R^2 of 0.65.

The vent gas volume increased 0.057L for every 10 °C/min increase.
A simple linear regression was calculated to predict percent pressure rise based on heat rate. A significant regression equation was found ($F(1,8)=9.24, p=0.016$), with a R^2 of 0.54. The percent pressure rise increased 0.89% for every 10 $\degree C/min$ increase.

$y = 0.089\%x + 18.8\%$

Heat Rate vs Percent Pressure Rise

Percent Pressure Rise, %

0 10 20 30

C\degree/min

0 10 20 30 40
Le Chatelier’s Mixing Rule

• Heat rate does not have a significant effect on the measured gas concentrations

• The gas concentrations used for the calculation of the lower flammability limit (LFL) were measured and averaged. The results are tabulated.

• The LFL can be calculated using Le Chatelier’s Mixing Rule

<table>
<thead>
<tr>
<th>Gas Specie</th>
<th>Averaged Gas Concentration, %vol</th>
<th>LFL, %vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbon dioxide</td>
<td>41.2±2.05</td>
<td>0</td>
</tr>
<tr>
<td>carbon monoxide</td>
<td>3.82±0.35</td>
<td>12.5</td>
</tr>
<tr>
<td>ethane</td>
<td>1.35±0.08</td>
<td>3.00</td>
</tr>
<tr>
<td>ethylene</td>
<td>3.72±0.11</td>
<td>3.10</td>
</tr>
<tr>
<td>hydrogen</td>
<td>17.0±1.19</td>
<td>4.95</td>
</tr>
<tr>
<td>methane</td>
<td>2.58±0.09</td>
<td>5.30</td>
</tr>
<tr>
<td>propane</td>
<td>0.34±0.02</td>
<td>2.10</td>
</tr>
<tr>
<td>propylene</td>
<td>3.75±0.29</td>
<td>2.40</td>
</tr>
</tbody>
</table>

± confidence intervals based off of a 95% confidence interval
Le Chatelier’s Mixing Rule, LFL

• The LFL is calculated to be 9.10%
• With the LFL and the total volume of vent gas, we can calculate the total volume of vent gas and air mixture that will become flammable per single thermal runaway event
• A single cell can make 10.2L of vent gas and air mixture flammable

<table>
<thead>
<tr>
<th>Pouch Thermal Runaway</th>
<th>Calculated LFL, %vol</th>
<th>Volume Vent Gas per Event, L</th>
<th>Max Potentially Flammable Vent and Air Mixture, L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.10±0.75</td>
<td>0.92±0.08</td>
<td>10.2±1.21</td>
</tr>
</tbody>
</table>
Conclusion

• Heat rate does have a measurable effect on

 • Vent gas total volume ($M=0.94L$, $SD=0.17L$, $SEM=0.04L$)
 • Percent pressure rise ($M=20.6\%$, $SD=2.74\%$, $SEM=0.73\%$)
 • Carbon dioxide concentration

• Heat rate does not have a significant effect on

 • Cell case temperature ($M=404^\circ C$, $SD=36.9^\circ C$, $SEM=11.7^\circ C$)
 • The majority of vent gas constituent’s concentrations and volumes

• The calculated LFL of the gas mixture is 9.10\%
Contact Information

Matthew Karp
- Research Engineer
- FAA ANG-E211 Systems Fire Protection
- Phone: 609-485-4538
- Email: Matthew.Karp@FAA.gov