The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference October 28-31, 2019 – Atlantic City, New Jersey, USA

Knowledge for Tomorrow

Method development for full aircraft crash simulation at different levels of modeling detail

P. Schatrow, M. Waimer, M. Petsch, C. Leon Munoz, D. Kohlgrüber German Aerospace Center (DLR) – Institute of Structures and Design Stuttgart - Germany

Overview

Motivation

• Full aircraft crash analysis as a research goal at DLR

Strategy

Method developments

Method development for full aircraft crash simulation

Process chain tool

Current status: first results for tool & model check

- Simulation model details
- Fuselage section crash analysis
- Full aircraft crash analysis

Summary & Next steps

Motivation

Full aircraft crash analysis as a research goal at DLR

Simplifications by analyzing a typical fuselage section instead of a full aircraft xz-crash

	Typical fuselage section (vertical drop)	Full aircraft (combined xz-impact)	
Local impact velocity	mainly constant	different along the fuselage stations (e.g. crash event with pitch angle)	
Local stiffness	mainly constant	different along the fuselage stations (e.g. typical and wingbox sections)	
Boundary conditions	free end-sections (partly "somehow" reinforced) (distinct ovalization)	real structural environment (real ovalization)	
Horizontal impact loads	neglected	considered	
DLR			

Motivation

Full aircraft crash analysis as a research goal at DLR

Simplifications by analyzing a typical fuselage section instead of a full aircraft xz-crash

Exemplary aspect

- What happens to a cabin floor structure damaged at the first vertical impact, when the max. horizontal load will apply at a subsequent phase? Still capable to remain structurally integer?
- What happens to specific crash structures at the sub-cargo area when high horizontal decelerations act during crushing, e.g. for xz-impact on soft soil? Still progressive crushing or structural collapse?

DLR.de • Chart 5 > The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference > P. Schatrow et al. • Method development for full aircraft crash simulation at different levels of modeling detail

Overview

Motivation

• Full aircraft crash analysis as a research goal at DLR

Strategy

Method developments

Method development for full aircraft crash simulation

Process chain tool

Current status: first results for tool & model check

- Simulation model details
- Fuselage section crash analysis
- Full aircraft crash analysis

Summary & Next steps

Strategy Method developments

Different levels of model fidelity (application-driven)

- A) Low fidelity: Simplified, efficient beam modeling
- B) Medium fidelity: Hybrid macro-FE modeling
- C) High fidelity: Cost intensive shell modeling incl. further details

Automated finite element model generation

- Parametric modeling (geometry, FE meshes and models)
- Modules for aircraft structure, occupants, cargo, masses, impact terrains, etc.

Validation of method developments based on available experimental data

- Fokker F28 Pendulum Crash Test (performed by FAA/NASA in 2019)
 - Collaboration with Fokker Services, FAA, NASA (exchange of data)

DLR.de • Chart 7 > The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference > P. Schatrow et al. • Method development for full aircraft crash simulation at different levels of modeling detail

Overview

Motivation

• Full aircraft crash analysis as a research goal at DLR

Strategy

Method developments

Method development for full aircraft crash simulation

Process chain tool

Current status: first results for tool & model check

- Simulation model details
- Fuselage section crash analysis
- Full aircraft crash analysis

Summary & Next steps

Method development for full aircraft crash simulation Process chain tool

Automated finite element model generation

- Parametric modeling (geometry, FE meshes and models)
- Modules for input, aircraft structure, occupants, cargo, masses, impact terrains, etc.

Method development for full aircraft crash simulation A Process chain tool

A) Input module

- CPACS file format
- · Parameterized and automated generation of different aircraft configurations (wide-body, single-aisle, regional) Wide-body aircraft Single-aisle aircraft Regional aircraft CPACS: Common Parametric Aircraft Configuration Schema https://cpacs.de/

Module: Aircraff structur

Occupent

hard soft water

Method development for full aircraft crash simulation Process chain tool

C) Occupant module and D) Cargo module

• Development of each module acc. to the building block (BB) approach

Method development for full aircraft crash simulation Process chain tool

E) Mass module

- · Discrete masses for
 - Payload (occupants, cargo)
 - Structure (wing, vertical and horizontal stabilizer, landing gears, etc.)

1

- Systems, power units, fuel
- Interiors/monuments (overhead bins, linings, coverings, lavatories, gallies, etc.)

Method development for full aircraft crash simulation

"Ready to use" simulation model (process chain output)

• Each module provides individual levels of model fidelity (structure, occupants, cargo, terrain, etc.)

Depicted high fidelity model generated with previously developed DLR tool, which is limited to a typical fuselage section.

Module; Aircraff structure Module

Occupsy

M DR

+

Moduli

Mass

hard soft

water

Module Cargo DLR.de • Chart 14 > The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference > P. Schatrow et al. • Method development for full aircraft crash simulation at different levels of modeling detail

Overview

Motivation

• Full aircraft crash analysis as a research goal at DLR

Strategy

Method developments

Method development for full aircraft crash simulation

Process chain tool

Current status: first results for tool & model check

- Simulation model details
- Fuselage section crash analysis
- Full aircraft crash analysis

Summary & Next steps

Current status: first results for tool & model check

Simulation model details (low fidelity)

Code

- LS-Dyna R10.2.0
- Linux cluster

Element formulation and material model

(simplified assumptions for tool & model check)

- Beam elements
 - ELFORM = 2 (Belytschko-Schwer)
 - ELFORM = 1 (Hughes-Liu)
 - *MAT_SIMPLIFIED_JOHNSON_COOK (*MAT_098) (isotropic)
- Shell elements
 - ELFORM = 2 (Belytschko-Tsay)
 - *MAT_PIECEWISE_LINEAR_PLASTICITY (*MAT_024)

(isotropic)

L

Current status: first results for tool & model check

A) Fuselage sections vertical drop (low fidelity)

DLR.de • Chart 17 > The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference > P. Schatrow et al. • Method development for full aircraft crash simulation at different levels of modeling detail

Current status: first results for tool & model check

A) Fuselage sections vertical drop (low fidelity)

Energy plot (v_z = 7.6 m/s, rigid impact surface)

Plot of energies indicate different deformation/ stiffness of the fuselage sections (reasonable result)

For tool & model check only! Not yet validated! DLR.de • Chart 18 > The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference > P. Schatrow et al. • Method development for full aircraft crash simulation at different levels of modeling detail

Current status: first results for tool & model check

y y

B) Full aircraft vertical drop (low_fidelity)

Crash kinematics

- v_z = 7.6 m/s (25 ft/s)
- Rigid impact surface
- 5° pitch angle

	Full aircraft		
Length	36,495 mm (26 seat rows)		
Mass	23,974 kg ¹⁾		
Number of nodes	≈ 205,600		Discrete mass elements "
Number of mass elements	≈ 586	>	Occupants & seats
Number of beam elements	≈ 96,400		Carry-on luggage
Number of shell elements	≈ 177,400		Overhead bins

¹⁾ Further masses not included, for direct comparison with fuselage section drop tests: cargo, wing, vertical & horizontal stabilizer, power units, systems, fuel, landing gear, pylons, galley, lavatory, etc.

For tool & model check only!

Not yet validated!

Current status: first results for tool & model check

B) Full aircraft vertical drop (low fidelity)

Energy plot (v_z = 7.6 m/s, rigid impact surface)

- Energy plot indicates different phases during the drop test of the aircraft with 5° pitch angle
 - Phase 1: impact at the rear
 - Phase 2: rotation of the aircraft
 - Phase 3: impact of the center and forward fuselage

For tool & model check only! Not yet validated!

DLR.de • Chart 21 > The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference > P. Schatrow et al. • Method development for full aircraft crash simulation at different levels of modeling detail

Summary

Motivation: Full aircraft crash analysis as a research goal at DLR

• Today's simplifications in analyzing a fuselage section drop test instead of a full aircraft xz-crash

Strategy: Method development for full aircraft crash simulation

- Different levels of model fidelity (application-driven: suitable model fidelity for any given application)
- Development of individual modules for aircraft structure, occupants, cargo, masses, impact terrains, etc.
- Validation of method developments based on available experimental data

sh simulation e model fidelity cupants, cargo, erimental data

Current status: first results for tool & model check (low fidelity model, not yet validated)

- Fuselage section: vertical drop of typical, center and conical section
- Full aircraft: vertical drop with 5° pitch angle

DLR.de • Chart 24 > The Ninth Triennial International Aircraft Fire and Cabin Safety Research Conference > P. Schatrow et al. • Method development for full aircraft crash simulation at different levels of modeling detail

Thank you for your attention!

