

Comparison of Lower Leg Responses Using Hybrid III, THOR-50M, and THUMS in Simulated Test Conditions

K. Friedman, <u>G. Mattos</u>, J. Hutchinson, K. Bui

Friedman Research Corporation

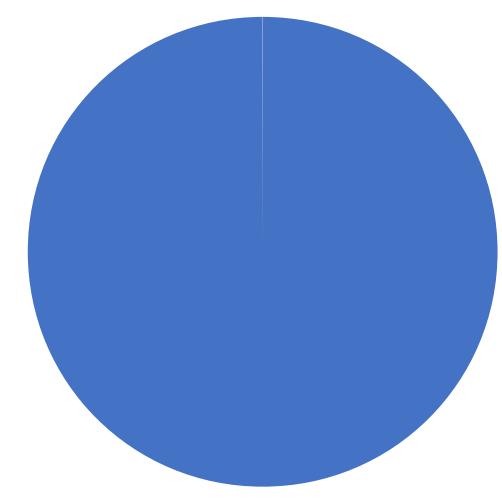
Austin, TX

512-247-2277

J. Paver

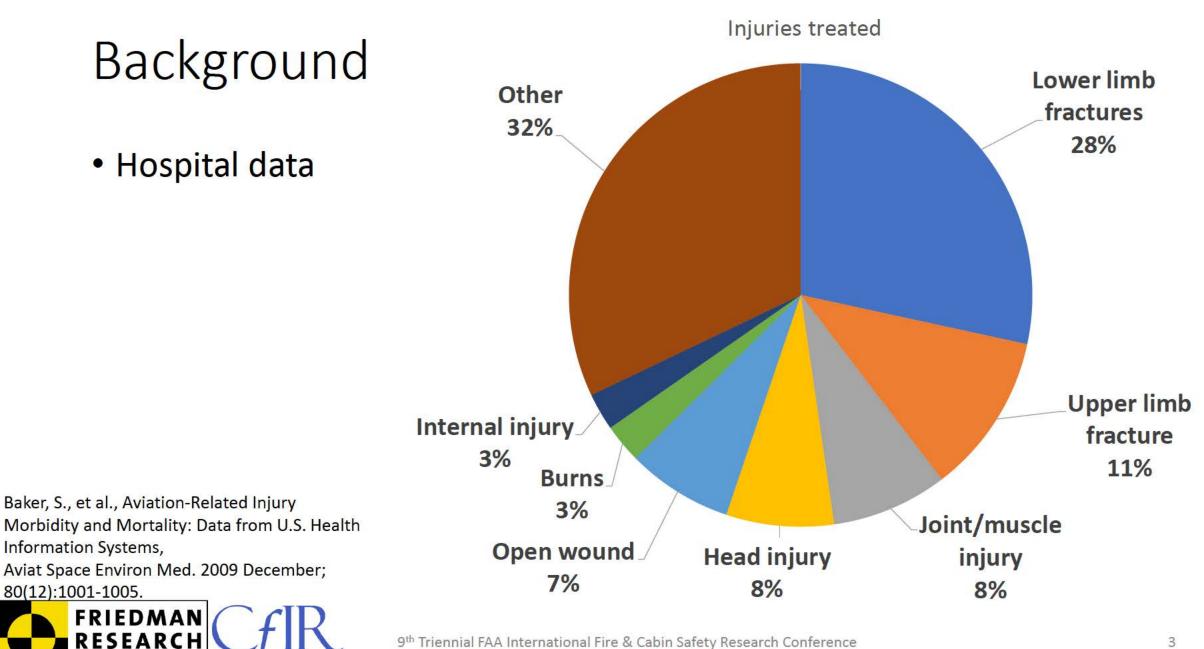
Center for Injury Research

Santa Barbara, CA


9th Triennial FAA International Fire & Cabin Safety Research

Conference

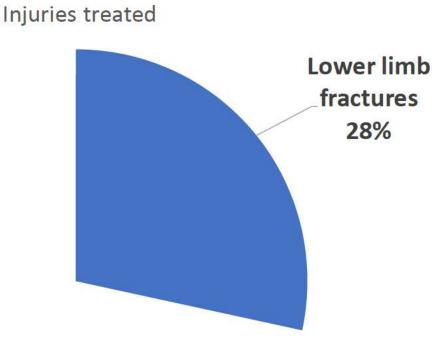
Background


• Hospital data

Commercial aircraft occupants hospitalized annually

Baker, S., et al., Aviation-Related Injury Morbidity and Mortality: Data from U.S. Health Information Systems Aviat Space Environ Med. 2009 December; 80(12):1001-1005.

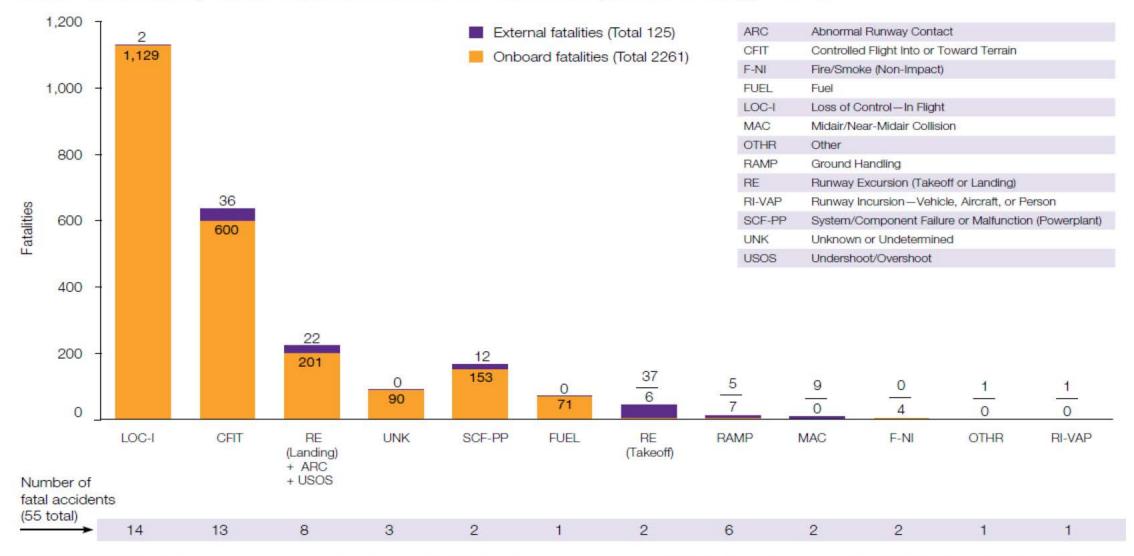
9th Triennial FAA International Fire & Cabin Safety Research Conference


CORPORATION

Background

- Hospital data
- 820 Fracture of neck of femur
- 821 Fracture of other and unspecified parts of femur
- 822 Fracture of patella
- 823 Fracture of tibia and fibula
- 824 Fracture of ankle
- 825 Fracture of one or more tarsal and metatarsal bones
- 826 Fracture of one or more phalanges of foot
- 827 Other multiple and ill-defined fractures of lower limb
- 828 Multiple fractures involving both lower limbs lower with upper limb and lower limb(s) with rib(s) and sternum
- 829 Fracture of unspecified bones

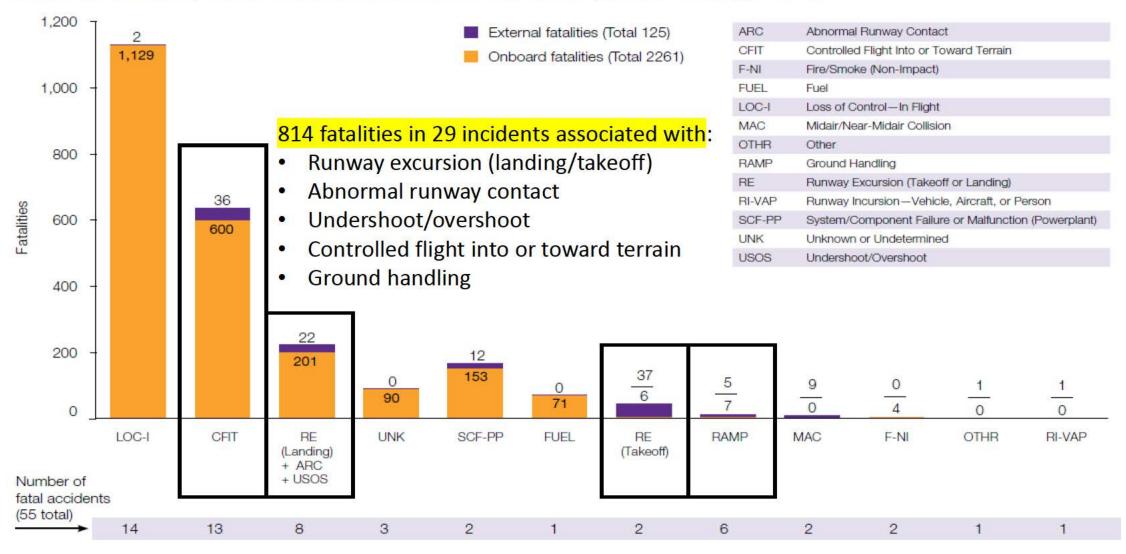
Baker, S., et al., Aviation-Related Injury Morbidity and Mortality: Data from U.S. Health Information Systems, Aviat Space Environ Med. 2009 December; 80(12):1001-1005.



Fatalities by CICTT Aviation Occurrence Categories

Fatal Accidents | Worldwide Commercial Jet Fleet | 2008 through 2017

FRIEDMAN RESEARCH


CORPORATION

Boeing, "Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations", 1959 – 2017, 2017.

Fatalities by CICTT Aviation Occurrence Categories

Fatal Accidents | Worldwide Commercial Jet Fleet | 2008 through 2017

Boeing, "Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations", 1959 – 2017, 2017.

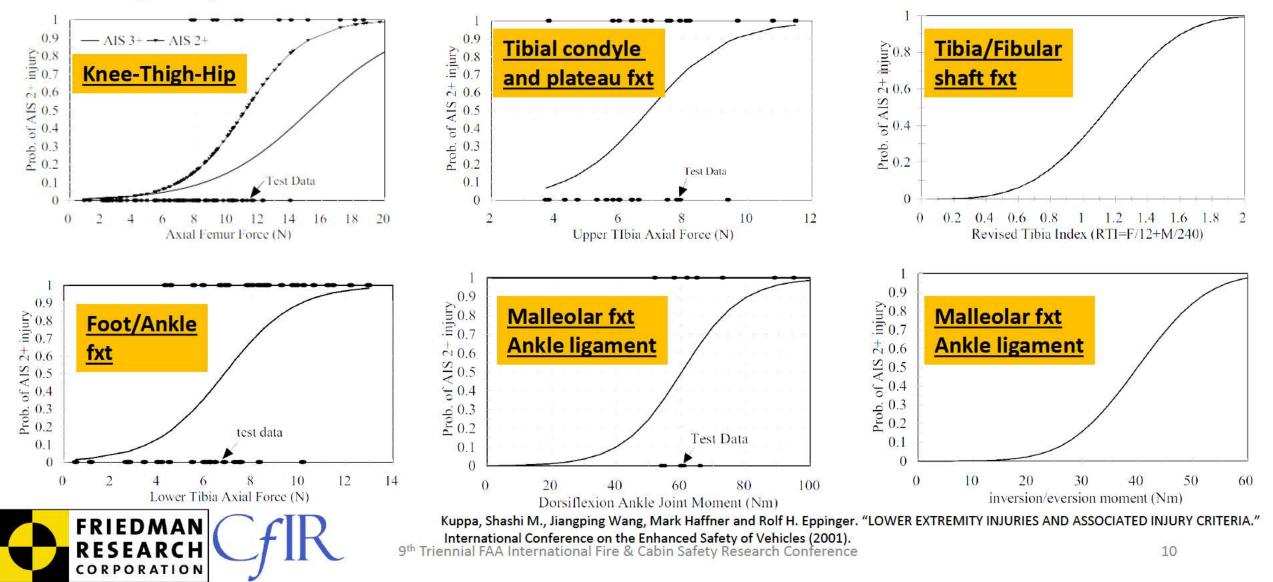
What is a serious injury?

- ICAO and NTSB Definitions (paraphrased)
 - Requires > 48 hr hospitalization
 - Results in bone fracture
 - Causes severe hemorrhage, nerve, muscle, or tendon damage
 - Internal organ injury
 - >2nd degree burns over >5% of body
 - Exposure to infectious substance or radiation

What is a serious injury?

- ICAO and NTSB Definitions (paraphrased)
 - Requires > 48 hr hospitalization
 - Results in bone fracture
 - Causes severe hemorrhage, nerve, muscle, or tendon damage
 - Internal organ injury
 - >2nd degree burns over >5% of body
 - Exposure to infectious substance or radiation

Serious leg injury?


• Results in bone fracture

• Causes severe hemorrhage, nerve, muscle, or tendon damage

- Blunt impact
 - Fractures, dislocations, crush injuries
 - Muscle/Connective tissue damage
- Sharp edge/point
 - Lacerations, hemorrhage

Injury Risk Curves

Summary of Lower Extremity Injury Criteria

Body Region	Percent	Percent	Injury Criteria	50 th pcntile male 25% prob. of injury limit	5th percentile adult female		95th percentile adult male	
	AIS 2+ injury	LLI			scale factor	injury limit	scale factor	injury limit
Hip	12.2%	24.3%	axial femur force	9040 N	$\lambda_{\rm F} = \lambda_{\rm x-femur}^2 = 0.85^2$	6510 N	$\lambda_{\rm F} = \lambda_{\rm x-femur}^2$	10580 N
Femur	9.4%	10.7%			=0.72		$=1.08^{2}$ =1.17	
knee	33.1%	6.9%						
Knee ligament	0.5%	0.8%	Tibia/fibula relative translation	15 mm	$\lambda_{l} = (0.85 + 0.85)/2 = 0.85$	13 mm	$\lambda_{l} = (1.08+1.09)/2 = 1.09$	16.5 mm
Tibia Plateau	7.1%	8.2%	Proximal tibia axial force	5.6 kN	$\begin{array}{c}\lambda_{F}\!\!=\!\!\lambda_{x\!\!-\!ti\!bia}^{2}\!=\!\!0.85^{2}\\=\!\!0.72\end{array}$	4.0 kN	$\begin{array}{c}\lambda_{F}\!\!=\!\!\lambda_{x\text{-tibia}}^{2}\!=\!\!1.09^{2}\\=1.2\end{array}$	6.7 kN
Tibia/fibula shaft	4.5%	8.1%	Revised Tibia Index F/F _c +M/M _c <0.9	$\frac{F_c=12 \text{ kN}}{M_c=240 \text{ Nm}}$	$\begin{array}{l}\lambda_{F}\!\!=\!\!\lambda_{x\text{-tibia}}^{2}\!\!=\!\!0.72\\\lambda_{M}\!\!=\!\!\lambda_{x\text{-tibia}}^{3}\!\!=\!\!0.61\end{array}$		$\lambda_{F} = \lambda_{x-tibia}^{2} = 1.2$ $\lambda_{M} = \lambda_{x-tibia}^{3} = 1.3$	F _c =14.4 kN M _c =312 Nm
ankle+calcaneus	3.3%	3.7%	Distal tibia axial	5.2 kN	$\lambda_{F}\!\!=\!\!\lambda_{x\text{-tibia}}^{2}\!\!=\!\!0.72$	3.75 kN	$\lambda_F = \lambda_{x-tibia}^2 = 1.2$	6.25 kN
midfoot	10.0%	10.8%	force					
ankle malleolus	19.9%	26.5%	dorsiflexion moment	50 Nm	$\substack{\lambda_{M}=\lambda_{x\text{-ankle}}^{3}=0.85^{3}\\=0.61}$	31 Nm	$\lambda_M\!\!=\!\!\lambda_{x\text{-ankle}}{}^3\!\!=\!\!1.3$	65 Nm
			Xversion moment	33 Nm	$\lambda_M = \lambda_{x-ankle}^3 = 0.61$	20 Nm	$\lambda_{M} = \lambda_{x-ankle}^{3} = 1.3$	43 Nm

Kuppa, Shashi M., Jiangping Wang, Mark Haffner and Rolf H. Eppinger. "LOWER EXTREMITY INJURIES AND ASSOCIATED INJURY CRITERIA." International Conference on the Enhanced Safety of Vehicles (2001).

FRIEDMAN

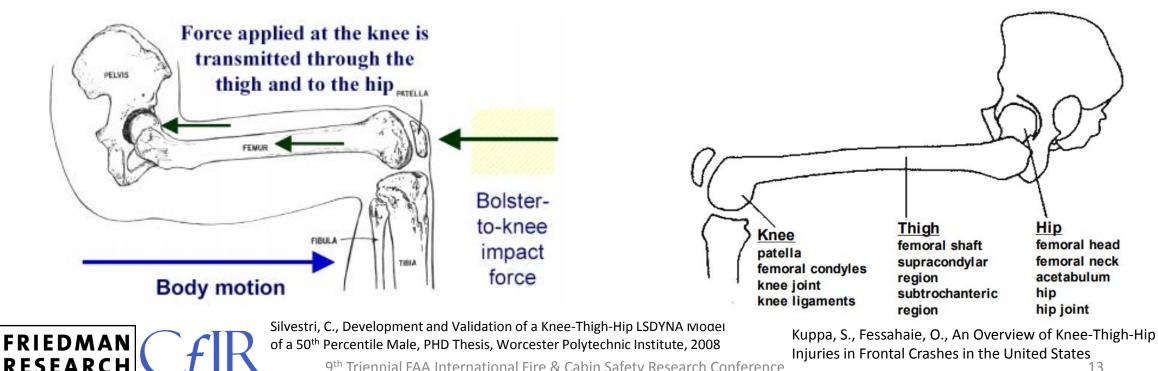
CORPORATION

Example IARV (Star Rating) – Lower Limb

Table 1
Injury Parameter Cutoff Values Associated with Possible Injury Protection Ratings

1.			Good -	Acceptable	Marginal
Body Region	Parameter	IARV	Acceptable	- Marginal	- Poor

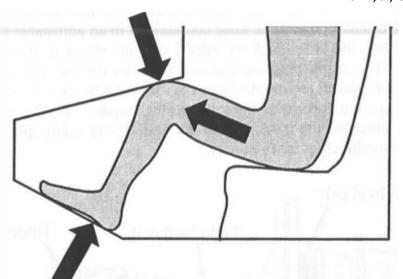
Leg and foot,	Femur axial force (kN)**	-9.1	-7.3	-9.1	-10.9
left and right	Tibia-femur displacement (mm)	-15	-12	-15	-18
	Tibia index (upper, lower)	1.00	0.80	1.00	1.20
	Tibia axial force (kN)	-8.0	-4.0	-6.0	-8.0
	Foot acceleration (g)	150	150	200	260



Mechanisms of Injury - KTH

- Most common lower limb injury in vehicle crashes
 - 55% of AIS 2+; 42% life years lost to injury

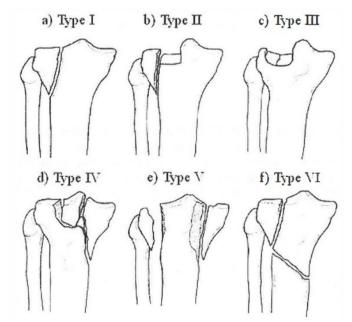
CORPORATION


Kuppa, Shashi M., Jiangping Wang, Mark Haffner and Rolf H. Eppinger. "LOWER EXTREMITY INJURIES AND ASSOCIATED ٠ INJURY CRITERIA." International Conference on the Enhanced Safety of Vehicles (2001).

Mechanisms of Injury – Tibial Plateau

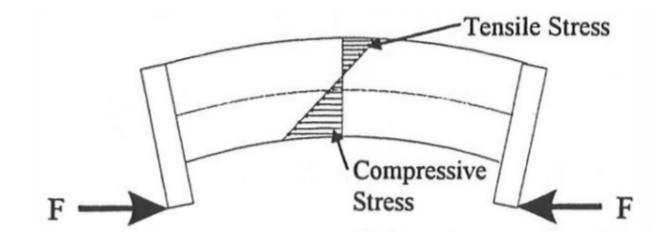

- Most severe lower limb injury in vehicle crashes
 - Long-term impairment, poor outcome
 - Often associated with foot/ankle fracture

• Funk, J., et al., Experimentally Produced Tibial Plateau Fractures, IRCOBI 2000



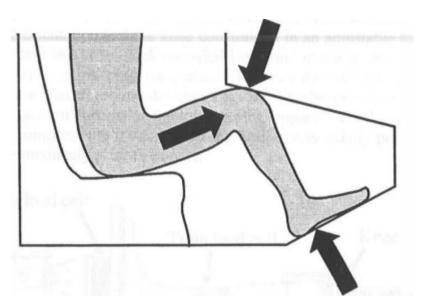
FDMAN

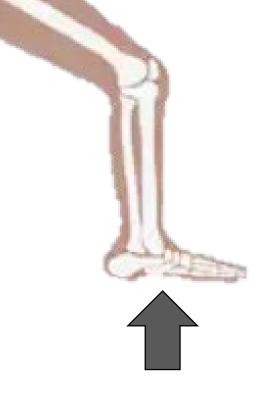
CORPORATION


9th Triennial FAA International Fire & Cabin Safety Research Conference

Schatzker, J., McBroom, R., Bruce, D., "The Tibia Plateau Fracture: The Toronto Experience 1 968-1 975," Clinical Orthopaedics and Related Research," Vol. 138, pp. 94-1 04, 1 979. 14

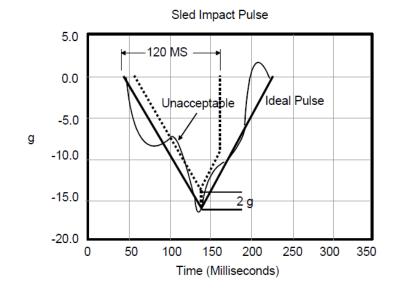
Mechanisms of Injury – Tibia/Fibula Shaft


• Less frequent, less severe in vehicle crashes


Mechanisms of Injury – Foot/Ankle

- Less frequent, less severe in vehicle crashes
 - Long-term impairment, poor outcome
 - Often associated with foot/ankle fracture
 - Funk, J., et al., Experimentally Produced Tibial Plateau Fractures, IRCOBI 2000

Funk, J., et al., Experimentally Produced Tibial Plateau Fractures, IRCOBI 2000

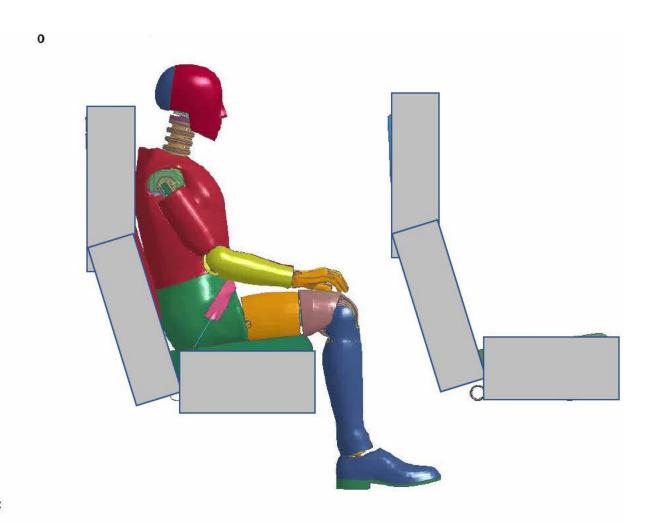

Methods

- Finite Element Analysis (LS-DYNA)
- Validated model
 - Hybrid III 50th
 - THOR 50M
 - THUMS
- FAA Frontal Impact Test
 - Production seat
 - Validated against test
 - 36" pitch

FRIEDMAN

CORPORATION

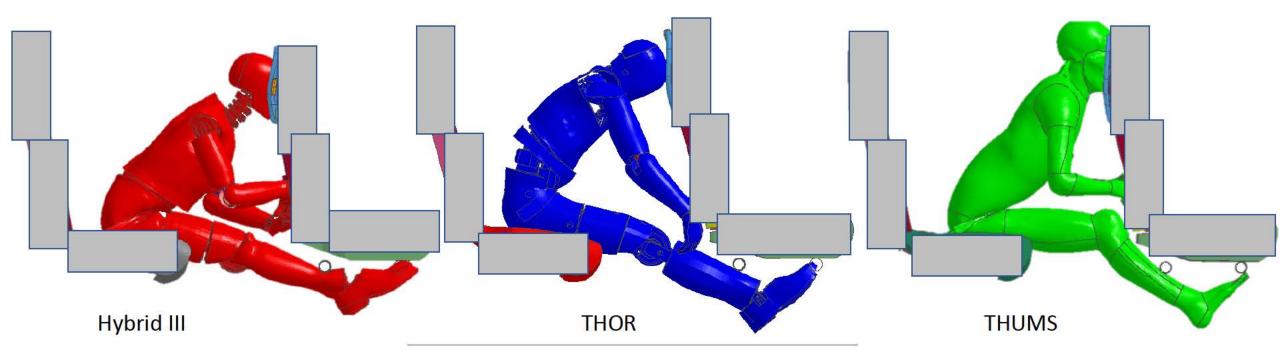
• Foam seat and seatback



Methods

- Initial settling of dummy
- Tighten belt (~75 mm)
- Apply deceleration pulse

*FE model of production seat used, but hidden for proprietary reasons


9th Triennial FAA International Fire & Cabin Safety Research Conference

Time =

Results

*FE model of production seat used, but hidden for proprietary reasons

- Different Kinematics
 - Tibia contact location, knee and pelvis excursion, head contact

Results

• Tibia impact velocity

	Average relative Impact Velocities			
Surrogate	Horizontal (m/s)	Vertical (m/s)		
Hybrid III	2.5	2.5		
THOR 50M	2	5		
THUMS	6.5	3		

144 **Effective Plastic Strain** 184 Time = **Contours of Effective Plastic Strain** 5.673e-03 max IP. value 5.389e-03 min=0, at elem# 81031073 max=0.00567286, at elem# 81054239 5.106e-03 4.822e-03 4.538e-03 4.255e-03 3.971e-03 3.687e-03 3.404e-03 3.120e-03 2.836e-03 2.553e-03 2.269e-03 1.985e-03 45 22 1.702e-03 1.418e-03 1,135e-03 8.509e-04 5.673e-04 2.836e-04 0.000e+00

Results - Summary

Injury Mechanism	Loading scenario
KTH – axial femur load	Knee to Seatback?
Tibial plateau fracture	Floor loading + seat engagement
Tibia fracture	Shin to seat support
Foot/Ankle fracture	Foot to seat support? Floor loading?

Results - Pending

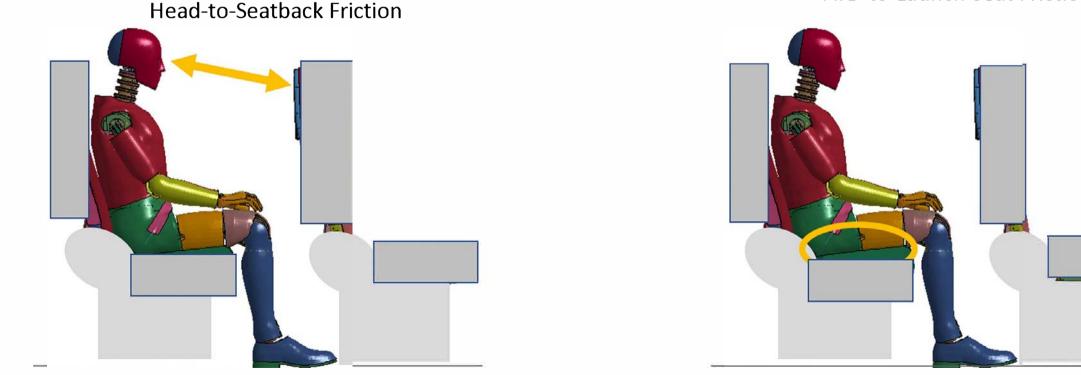
- Effect of
 - Floor motion
 - Seat Pitch / Knee to seatback
 - Brace Position
 - Activated musculature for HBM
 - Out of position
 - "Real World" impact conditions
 - Varying stature/age/gender/etc.
 - Belt-fit/position
 - •

Discussion

- Greater lower limb excursion for THUMS
- Faster and earlier tibia-seat impact for THUMS and THOR over H3
- THUMS tibia impact is above injury threshold
- Knee-seatback interaction for THUMS
 - Would increase at lower seat pitch layouts, greater occupant statute/weight
- Kinematics different for all surrogates
- Lower belt forces for THUMS

Discussion

- Most injury mechanisms not replicated
 - Floor deformation
 - Occupant positioning/bracing
 - Vertical component
- Benefit from integrated impact scenarios (fuselage damage + seat performance)
- The effects of vertical and forward impact would exacerbate submarining which would increase risk of lower extremity injury

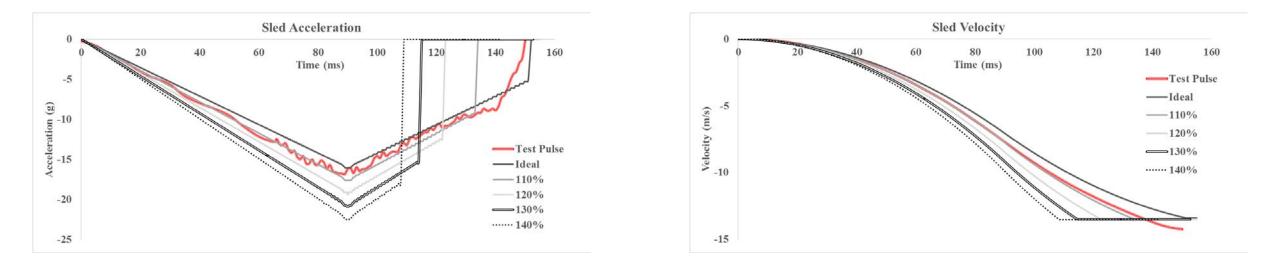


Discussion – Additional Information

• Effect of friction on injury response – 20-50% difference

FRIEDMAN

CORPORATION



ATD-to-Launch Seat Friction

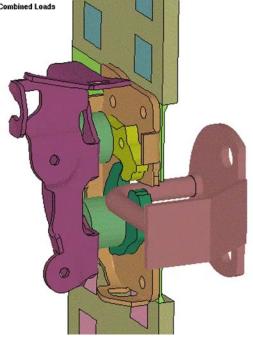
Friedman, K., Mattos, G., et al., Potential effects of friction on injury measures computed in aircraft seat HIC analysis testing, SAE Aerotech Conference, 2017-01-2054 9th Triennial FAA International Fire & Cabin Safety Research Conference 26

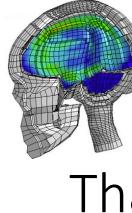
Discussion – Additional Information

• Effect of deceleration on injury response – 20-75% difference

Friedman, K., Mattos, G., et al., Potential effects of deceleration pulse variations on injury measures computed in aircraft seat HIC analysis testing, SAE Aerotech Conference, 2017-01-2052,

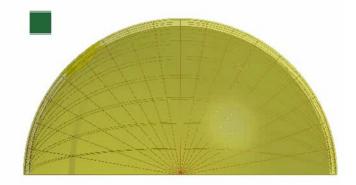
Conclusions


- Lower limb injury is frequent in aircraft crashes
- Forward sled impacts (dynamic seat test) demonstrate that lower limb injury is potentially masked with the use of ATDs over HBMs
 - Due to differences in kinematics and injury measure capability
- Existing forward sled impact scenario likely not representative of many lower limb injury scenarios
- The use of virtual testing in combination with physical testing is likely the way forward
- Field data is vital to ensure effective designs/countermeasures



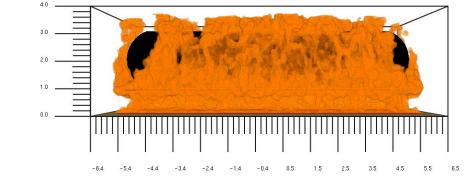
Future work

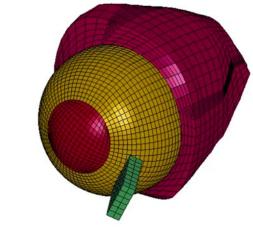
- Performance based evaluations
 - Apply impact scenarios to fuselage
 - Identify a 'safety envelope'
 - IARVs
- Injury Data Expansion
 - More information about injuries

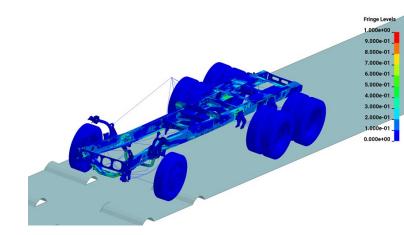

Thank you for your time

Garrett Mattos

gmattos@friedmanresearch.com


www.friedmanresearch.com


512-247-2277



FRIEDMAN RESEARCH

CORPORATION

