Deoxybenzoin-containing Polymers:

Combining Tailored Polymer Architectures with Non-halogenated Materials

The Ninth Triennial International Fire & Cabin Safety Research ConferenceAtlantic City, NJOctober 29 2019

@Emrickgroup

Synthetic Progress on Low-flammability Materials Enabled by FAA Support

Objective: New materials discovery to produce scalable, non-flammable materials

Non-halogenated precursors to polymers with **high char yield** and **low flammability**

Progress in Organic and Polymeric Flame Retardants

Firemaster® 2100R

monomer or additive

OH

+ Effective use in commodity polymers (polycarbonate, polyurethanes, epoxy, polystyrene etc.)

- Leaching from polymer material Environmental persistence Toxicity Restrictions and legislation

Inorganic fillers: non-halogenated

Aluminum trihydrate

Magnesium hydroxide

Phosphorus, nitrogen, and silicon-based inorganics

+ Environmentally-friendly Used in commodity polymers

- High loading needed for FR activity

Negative impact on mechanical properties of host polymer materials
Limitations in high-temperature applications

Our objective: develop inherently non-flammable polymers: no halogen, no P, no Al, etc....

Heat Release Capacity (HRC) Measurements on Synthetic Polymers

Federal Aviation Administration

Presentation Outline

Deoxybenzoin as a component of aromatic hydrocarbon flame-retardants

I. Brief background on polymers derived from deoxybenzoin

II. Branched deoxybenzoin polymers: new, polymeric additives

III. Deoxybenzoin polymers + phosphorus derivatives

Deoxybenzoin: Pathway to Char Formation

Deoxybenzoin converts to diphenylacetylene at high temperatures

Ramirez, M. L. *Thermal Decomposition Mechanism of 2,2-Bis(4-hydroxyphenyl)-1,1-dichloroethylene Based Polymers. DOT/FAA/AR-00/42.*; Department of Transportation, Federal Aviation Administration, National Technical Information Service: Springfield, VA, 2001; Stoliorav, S.I.; Westmoreland, P.R. *Polymer* **2003**, *44*, 5469; van der Waals et al. *J. Mol. Cat. A* **1998**, *134*, 179

Examples: Deoxybenzoin Incorporation into Aromatic Polyesters

BHDB Polyarylate Et₃BzNCI HO--OH + CI NaOH/H₂O CH_2CI_2 BHDB _ n HRC = <100 J/g-K Char yield = 45% 54 J

Increasing deoxybenzoin content (up to 15 weight percent)

Bis-epoxy Deoxybenzoin (BEDB)

Deoxybenzoin Doubles Char and Halves Heat Release

Heat release capacity (HRC) and total heat release (THR) from pyrolysis combustion flow calorimetry

		Formulation ^a	Thermal property		Flammability	
	_		$T_{g} (^{\circ}C)^{b}$	Residue ^c (%)	HRC (J/(gK))	THR (kJ/g)
		EBPA/4,4'-DDS	198	12	513 ± 10	25.3 ± 0.2
Bis-phenol A resins		EBPA/4,4'-DDS _{0.8} 4,4'-DDM _{0.2}	196	14	454 ± 30	24.9 ± 0.4
	4	EBPA/4,4'-DDS _{0.5} 4,4'-DDM _{0.5}	185	15	577 ± 28	25.4 ± 0.2
		EBPA/4,4'-DDS _{0.2} 4,4'-DDM _{0.8}	178	16	693 ± 21	26.2 ± 0.4
		EBPA/4,4′-DDM	179	16	737 ± 24	26.8 ± 0.4
	ŕ	BEDB/4,4'-DDS	181	30	420 ± 14	17.2 ± 0.2
		BEDB/4,4'-DDS _{0.8} 4,4'-DDM _{0.2}	180	33	342 ± 4	17.5 ± 0.5
Deoxybenzoin	Ţ	BEDB/4,4'-DDS _{0.5} 4,4'-DDM _{0.5}	173	34	321 ± 10	16.9 ± 0.3
resins		BEDB/4,4'-DDS _{0.2} 4,4'-DDM _{0.8}	160	35	378 ± 29	16.9 ± 0.1
		BEDB/4,4'-DDM	145	35	439 ± 7	17.6 ± 0.2

Thermal properties and flammability of the resins cured with mixed amines.

THR: heat of combustion of pyrolysis gas

HRC: maximum heat release rate divided by the heating rate

Subscripts mean mole fraction of compounds.

^b T_{σ} s were obtained from DSC.

^c Char residues were obtained from TGA at 850 °C in nitrogen (heating rate 10 °C/

min).

Lap shear strengths: BEDB/DDS: 15.4 MPa; BEDB/DDM: 12.8 MPa

ASTM D 1002 protocol

EBPA/DDS: 11.0 MPa; EBPA/DDM: 9.2 MPa

BEDB vs. BPA-epoxies

Comparable storage modulus BEDB had higher plane-strain fracture toughness

Polymer 2009

Presentation Outline

Deoxybenzoin as a component of aromatic hydrocarbon flame-retardants

I. Brief background on polymers derived from deoxybenzoin

НÓ

OH

II. Branched deoxybenzoin polymers: new, polymeric additives

III. Deoxybenzoin polymers + *phosphorus derivatives*

Impact of Branched Polymer Architecture on Properties

Polymer architecture	Linear	Branched	Hyperbranched	Dendritic
Viscosity	high	low	low	very low
Solubility	low	high	high	very high
Degree of branching (DB)	0	0-0.4	0.4-1	1

Branched Polymers as Processing Aids

Mackay Journal of Rheology 1999

Objective: Combine processing benefits of branched polymers with low flammability

Preparation of Deoxybenzoin AB₂ Monomer

Synthesis of Branched, Deoxybenzoin Aromatic Polyesters

Impact of Branching on Polyester Properties

Polymer	Solvent solubility	M _n (kg/mol)	M _w (kg/mol)	Ð	
BHDB-TPC*	insoluble	-	-	-	
BHDB-IPC*	DMF	3.2	2.6	1.22	
Branched	DMF, THF, DMSO	32.9	100	3.20	

Molecular weights estimated by GPC, eluting in DMF, relative to PS calibration standards

Thermal Properties of Branched Deoxybenzoin Polymres

Highly branched deoxybenzoin polyesters exhibit low heat release

Lyon J. Anal. Appl. Pyrol. 2004 Zhao Textile Research Journal 2016.

Probing Polymer Blends with Parallel-plate Rheology

Model System: Polyethylene-Dendrimer Blends

Reactive Processing

Combining chemistry and processing into a single step

Hoechst Celanese Corp. (1996) WO 96/35571

Reactive Processing with Deoxybenzoin Polyesters

Idealized reaction

Thermal properties: polyester blends

content (wt. %)	temperature (°C)	enthalpy (J/g)
0	253	46
5	247	42
25	234	29

Heat release properties: polyester blends

Deoxybenzoin-containing blends exhibit low heat release properties

Presentation Outline

Deoxybenzoin as a component of aromatic hydrocarbon flame-retardants

I. Brief background on polymers derived from deoxybenzoin

II. Branched deoxybenzoin polymers: new, polymeric additives

III. Deoxybenzoin polymers + phosphorus derivatives

Impact of Phosphorus on Materials Flammability

Battig, A; Angew. Chem. Int. Ed. (2018) 10450.

Integration of Phosphorus into Deoxybenzoin Structures

Hu, X.; J. Appl. Polym. Sci. (2018) 45904

Hu, X.; J. Appl. Polym. Sci. (2017) 45537

Deoxybenzoin-containing Polymers:

Combining Tailored Polymer Architectures with Non-halogenated Materials

The Ninth Triennial International Fire & Cabin Safety Research ConferenceAtlantic City, NJOctober 29 2019

Research Support

Federal Aviation Administration

Industrial support through the Center for UMass-Industry Research on Polymers (CUMIRP)