

Minimizing Halon emissions & improve MRO of aircraft fire extinguishers by acoustic emission technology

April 2024 International Aircraft Materials & Systems Forum Bremen, April 16 2024

Testing fire extinguisher structure - Test setups

\sim Acoustic emission (AE)

Hydrostatic test (HST)

Key properties: AE vs. HST

	\sim	Acoustic emission (AE)	***	Hydrostatic test (HST)
Test method & requirements	Test principle	Acoustic emission when load is applied		Expansion with test load applied
	Test medium	Agent		Water
	DOT requirements	DOT accepted alternative - DOT-SP 11850		CFR 49 PART 180 Subpart C (§180.205) (Expansion methods)
Sensitivity flaw detection	Undetected defects	Low risk		Moderate risk, many small flaws are undetectable
	Scrap-rate*	approximately 1-2 %		less than 0.1 %
Test process	Risks	Fully automated process, less potential damaging activities		Auxiliary processes - machining, welding (thermal load, material limits)
	Test load	Elastic deformation		Permanent plastic deformation - possible weakening of structure discussed

^{*} Rate of fire extinguishers that do not pass testing

Key properties: AE vs. HST (continued)

	\sim	Acoustic emission (AE)	***	Hydrostatic test (HST)
Specific conditions	Leakages	Leakproof for many years in operation (Weight check)		Risk of newly introduced leakages
	Corrosion detection	Highly sensitive		Visual inspection
	Corrosion risk	Very low corrosion risk		Higher corrosion risk due to risk for traces of water / moisture
Emission / Losses	Emissions / Agent loss	Zero emission - no discharge, no losses		10 - 35 % (High GWP / harmful agents)
	Halon 1301 obsolescence	Minimized consumption, mainly fire suppression on board of aircraft		Significant consumption by MRO activities
Emiss	Agent exposition staff	No exposition		Depending on safety measures
Economic / Quality	Maintenance cost	30 - 70 % (depending on reference)		100 % (reference)
	Turn-around-time	Fast (reduced process steps)		Reference
	Structure Quality / Safety	Improved		Reference

Future agents (Halon replacement) and research

AE-applicability for future halon replacement agents

- Studies support AE-technology is applicable for replacement agents, further studies planned
- Improved working safety for replacement agents with lower acceptable MAC (maximum allowable concentrations)
- Addressing possible environmental regulations

Questions & Discussion

Questions?