Seat Cushion Test Method Update

Presented to: IAMFTWG

By: Richard Hill

Date: February 8-9, 2012, Singapore

Introduction

- Continue working to setup and calibrate sonic burner for use with seat cushion test method for the purpose of replacing Park Burner
- Calibration and testing has been ongoing in an attempt to setup the sonic burner such that it will reproduce Park burner test results
- The advantage of the sonic burner is that it is capable of producing more consistent results than the Park burner

Summary of Last Meeting

Flow tested new nozzles

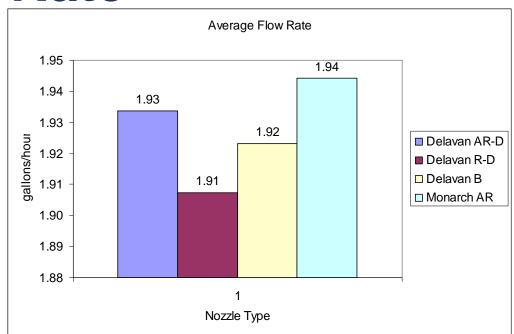
Checked for consistency in flow rates

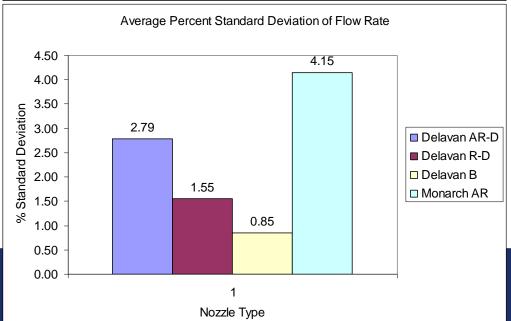
Testing nozzles in sonic burner

 Nozzle clocking to check for uniform flame temperature distribution using thermocouple rake

Seat cushion tests using sonic burner

 Data collected using old Park burner and Monarch nozzles will be compared to data taken using new nozzles and sonic burner

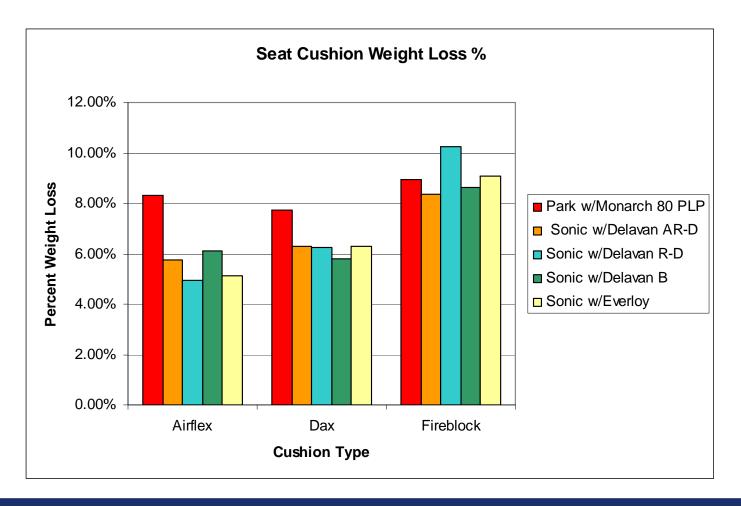

Thermocouple Temperature Drift


Thermocouple temperature measurements drop off after repeated heat cycling

Fuel Nozzle Flow Rate

Delevan Nozzle Flow Check

- The Delevan nozzles were checked on a bench top flow testing rig. The results show, that compared to the typical Monarch nozzles, the Delevan nozzles have a much lower percent error.
- Delevan 2.0 gph error: 4.09%
- Monarch 2.25 gph error: 13.59%
- Further testing with different nozzles is ongoing.
- 25 Everloy 2.0 gph-rated hollow cone nozzles were also tested, and produced results similar to the Delevan nozzles.


Nozzle Clocking Summary

- Monarch nozzles are not uniform around the spray cone periphery
- Delavan nozzles seem to provide more uniform spray pattern through 360° nozzle rotation
 - Delevan flame temperatures are lower (~100°F) than Monarch flame
 - Previously recorded lower temperatures partially due to old thermocouples
 - Temperatures for the Delevan nozzles increased after replacing old thermocouples with new ones

Seat Testing with Burner

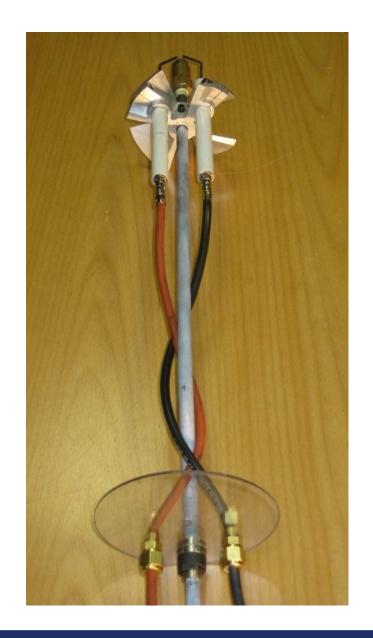
- Sonic Burner used to burn seat test cushions using new Delevan and Everloy Nozzles
- Park burner used with Monarch nozzle to test cushions and compared to sonic data
- Sonic burner produced slightly lower % weight loss than Park
- Seat cushions tested in question
 - Different covers used on different foam cushions
 - Need to run test using the same fabric cover on all foam types

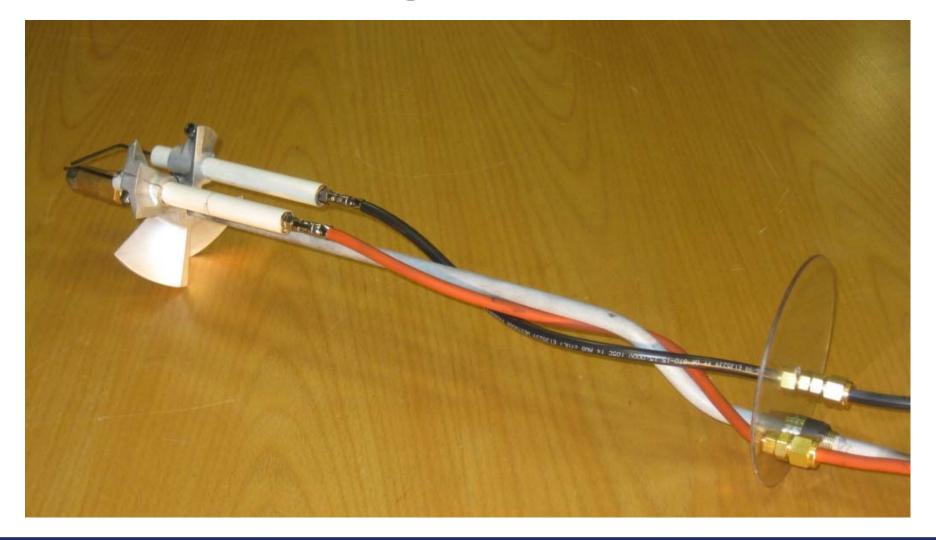
Results

Summary for Current Meeting

- Ignition Wire Positioning
- Igniter Positioning
- New Stator and Nozzle Settings
- New seat cushion tests with Park and NexGen burners
- Update on thermocouples

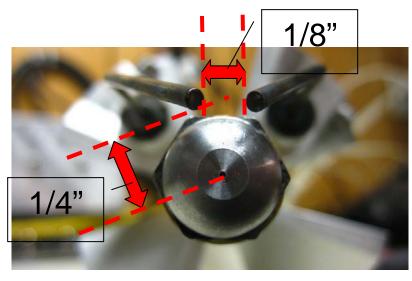
Ignition Wires

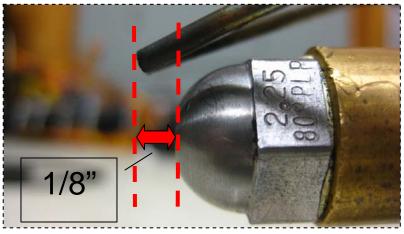

- Ignition wires previously wrapped around fuel rod
- Not standardized length or position for wires
- Position of wires can impede or redirect airflow within the draft tube and can affect the flame characteristics



Ignition Wires

- New wire length and positions minimize airflow disturbance
- Standardize wire position to minimize variability in burner performance and data results
- Improved repeatability



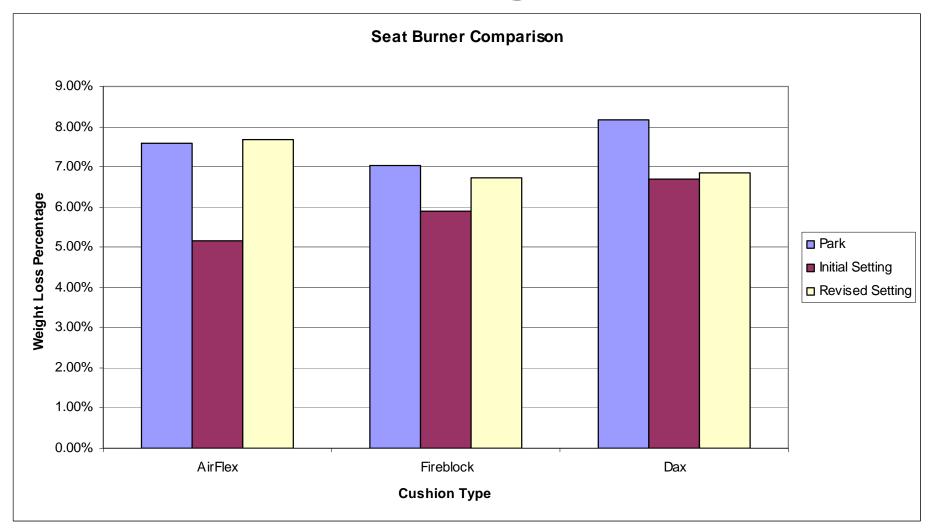

Example: New Ignition Wire Positions

Igniter Position

- Also needed specific standardized igniter position
- Gap between igniters
 1/8"
- Nozzle center to igniter
 ½"
- Nozzle face to igniter
 - **1/8**"

Refining Burner Settings

- Same procedure used on cargo burner
- Stator face to turbulator exit plane
 - 2.5", 2.75" (2 positions)
- Stator rotational position on fuel rod
 - 0-360° in increments of 45° (8 positions)
- Nozzle depth from turbulator exit plane
 - 5/16", 7/16", 9/16" (3 positions)
- Total of 48 unique combinations tested


Refining Burner Settings

- Stator/nozzle position combinations were selected which showed adequate flame properties
 - Temperature distribution
 - Repeatability
 - Full, even flame coming from cone (visual)
- Next step, test using seat cushions

- New shipment of seat cushions for testing
 - Dax, Airflex, and fireblocked cushions
- All cushions now covered in the same type of fabric
 - Previous tests had different fabrics on different cushion types
- Use Park burner and collect data using new cushions for comparison

- Use sonic burner with new initial stator settings to test new seat cushions
- Results less weight loss using sonic burner compared to Park burner
 - Minimal burner on bottom of horizontal cushion
- Stator repositioned to produce a flame that was weighted more on the bottom

- Revised stator settings tested
- Results much closer to Park results
- Measured temperature lower, although weight loss % increased
 - Higher measured temperatures do not necessarily mean greater burn lengths and/or weight loss

- Next step is to have other labs setup burner using same settings and check to see if results are comparable
- Nozzle Depth: 3/16"
- Stator Depth: 2 11/16"
- Stator Angle: 0° (centerline from vertical)

Thermocouple Update

- Thermocouple readings drop after repeated heat cycling of the TCs
- Tests run using cargo burner
- Tried larger diameter TCs which have a greater mass, and do not heat as quickly as 1/16" or 1/8" TC
- Results not entirely clear if using larger diameter TCs is an advantage
- Still some signs of temperatures dropping after repeated heat cycling

Future Items

- Continue testing with possibility of trying other stator settings
- Compare results from different labs
 - Have other labs use new burner settings and test
 - Round robin schedule?
- Kaowool seat testing
 - On hold from last meeting do to ignition wire positioning and stator readjustment