International Aircraft Materials Fire Test Working Group Meeting

Task Group Session on Revised Cargo Liner Test

Presented to: International Aircraft Materials Fire Test Working Group

By: Tim Salter, FAA Technical Center Date: June 19-20, 2013, Manchester, UK

Federal Aviation Administration

Previous Meeting Items

- Alternate method of burner air supply plumbing
 - Not feasible due to negative impact on burner performance
- Introduction to flame retention head
- Initial data results from testing with flame retention head
- 2012 sonic cargo burner round robin update
 Status: completed

Summary for this Meeting

Flame retention head

- Design and burner assembly
- Settings
- Burner development process
- Data results
- 2013 sonic cargo burner round robin utilizing the flame retention head
- Notes on soot removal from burner

Main Objective: Transition from Park Burner to Sonic Burner

Flame Retention Head (FRH)

- Replaces stator and turbulator
- Fits on end of burner draft tube with minimal modification
- Parts purchased from local heating supply store for less than \$50
- Tests have shown improved repeatability as compared to stator and turbulator configuration

Function of the Flame Retention Head

- Flame retention head (FRH) mounts to the end of the burner draft tube
- Generates a swirling motion of air and fuel exiting the burner draft tube
- Flame burns closer to the burner tube and is more efficient in combusting air and fuel mixture as compared to stator/turbulator setup

FRH vs. Stator and Turbulator

Flame Retention Head

Stator and Turbulator

Flame Retention Head (FRH) and Static Plate

- F31 Flame Retention Head
 - Combusts air and fuel mixture in a swirling, efficient flame
 - Replaces turbulator
- Static Disk
 - Designed to control and even out air flow to the flame retention head
 - Replaces stator

Ignition Wires

- Wires should be wrapped tightly around fuel rod as shown in picture in order to minimize possible disruptions of airflow inside burner tube
- Wire lengths (tip of metal wire terminal to rear of draft tube)
 - Red: 12.5"
 - Black: 12.5"

Ignition Wire Routing Method

 Igniter dimensions should be approximately the same as those shown in the pictures below

Standardized Igniter Position

- Gap between igniters - 1/8"
- Nozzle center to igniters
 ¹⁄₄"
- Nozzle face to igniter tips

 1/16"

Draft Tube Assembly

- Top: Modified draft tube shown with machined groove to allow for spacer sleeve and FRH
- Bottom: Spacer sleeve fits into draft tube to ensure static plate and fuel rod are centered in draft tube

Draft Tube Assembly

- Top: FRH is press fit onto the spacer sleeve
- Bottom: The FRH and spacer sleeve assembly is pressed into the burner draft tube until the face of the FRH and end of the draft tube are flush

Burner Settings

Cargo Liner Burner Settings

- Fuel Nozzle: Delavan 2.0 gal/hr 80° spray pattern W "all purpose"
 Face of FRH to nozzle tip: 1-1/8"
- Fuel nozzle adapter to static plate: 2-3/8"
- Static Plate Angle: centerline of igniters at 0°
 - Looking into the cone of the burner from above, the centerline between the igniters will be at 0° on the burner reference plane
- Fuel pressure: 108 psi (+/- 4 psi)
 - Pressure used as a starting point when checking fuel flow rate
- Air pressure: 45 psi
- Air Temperature: 40-60°F
- Fuel Temperature: 32-52°F

View from above Burner Cone

Back Panel Side of Sample Rig

Air Supply Entering Burner

View from above Burner Cone

Back Panel Side of Sample Rig

Air Supply Entering Burner

Development of Burner Settings

- Began with manufacturer's recommend settings for placement of static plate and igniters
- Air pressure
 - 20, 30 40, 50, 60 psi tested
 - 45 psi chosen based on cargo liner test results
 - Same air pressure used on seat burner with FRH
 - Results appear to be consistent and similar to Park results
- Nozzles
 - Delavan B (solid spray pattern)
 - Delavan A (hollow spray pattern)
 - Delavan W (all purpose spray pattern)
 - W nozzle selected based on cargo and seat burner test results

Initial Data Results

Black Felt Burnthrough Test

- 3 samples tested
- Avg Time: 410 sec
- Stdev: 19.4
- %Stdev: 4.73 %
- Stdev and %Stdev improved over tests using stator and turbulator
- Stdev: 22.33
- %Stdev: 6.03 %

2013 Cargo Sonic Burner w/FRH Round Robin

- 2013 round robin for sonic cargo burner currently underway
- 5 labs currently participating

- FAA, Akro Fireguard, Airbus, Accufleet, CAAC

- FAA has supplied each lab with a fuel nozzle, burner cone, modified draft tube, spacer tube, flame retention head, static plate, and test samples
- 3 types of samples provided
 - Heavy, woven fiberglass/epoxy liner (5 pieces)
 - Light, semi-rigid liner (3 pieces)
 - Polyacrylonitrile (PAN) felt (5 pieces)

Provided Burner Parts

- Modified draft tube
- Spacer tube
- Static plate
- Beckett model F31 flame retention head (FRH)
- Delavan 2.0 gal/hr 80°
 W style fuel nozzle
- Burner cone
 - Included for labs who have not previously participated in a round robin where cones were provided

Cargo Sonic Burner Round Robin

- Different sample materials will burn through at different rates, or show different temperature profiles measured 4 inches from the back-side of the sample
- Results should further reinforce the advantages of using the flame retention head in the sonic burner as an improvement over the stator and turbulator
- RR results from participating labs should demonstrate that FRH is a suitable replacement for the stator/turbulator setup
- Need RR results in order to finalize burner settings and design

Soot Removal from Burner

- Burner cones should be cleaned of soot between each calibration and/or sample test
- The compressed air source should remain on during cleaning to reduce the amount of soot that falls into the burner
- Fuel may briefly continue to flow from the nozzle after burner shutdown
- Soot soaked in fuel may collect in the bottom of the burner and eventually be deposited on the test sample causing premature sample failure
- It is important to periodically inspect and remove any buildup of soot from within the bottom of the burner tube
- A small shop vacuum works well to clean most of the soot from the bottom of the burner without the need to disassemble the burner

Soot Removal from Burner

Soot buildup in burner

Removing soot with vacuum

Planned Activities

- Finalize FRH burner settings
- Continue with 2013 sonic cargo burner RR using the flame retention head
- Conduct testing of various cargo design features to support development of advisory material
- Test burner using heat sink on thermocouples
 - Prolong life of thermocouples, prevent inaccurate readings

Questions?

