International Aircraft Materials Fire Test Working Group Meeting

Seat Cushion Test Method Update

Presented to: International Aircraft Materials Fire Test Working Group

By: Tim Salter, FAA Technical Center Date: June 19-20, 2013, Manchester, UK

Federal Aviation Administration

Previous Meeting Items

- Information regarding flame retention head and overview of initial test data
- Leather seat cushion restraints
- 2012 sonic burner seat cushion round robin
- Initial test results of TC readings using sonic burner compared to TC calibration unit results

Summary for this Meeting

Flame retention head

- Design and burner assembly
- Settings
- Burner development process
- Data results
- Plans for upcoming sonic seat burner round robin utilizing the flame retention head

Flame Retention Head (FRH)

- Eliminates the need for a stator and turbulator
- Fits on end of burner draft tube with minimal modification
- Parts purchased from local heating supply store for less than \$50
- Initial testing showed potential for improved test result repeatability as compared to stator and turbulator configuration

Function of the Flame Retention Head

- Flame retention head (FRH) mounts to the end of the burner draft tube G
- Generates a swirling motion of air and fuel exiting the burner draft tube
- Flame burns closer to the burner tube and is more efficient in combusting air and fuel mixture as compared to stator/turbulator setup

FRH vs. Stator and Turbulator

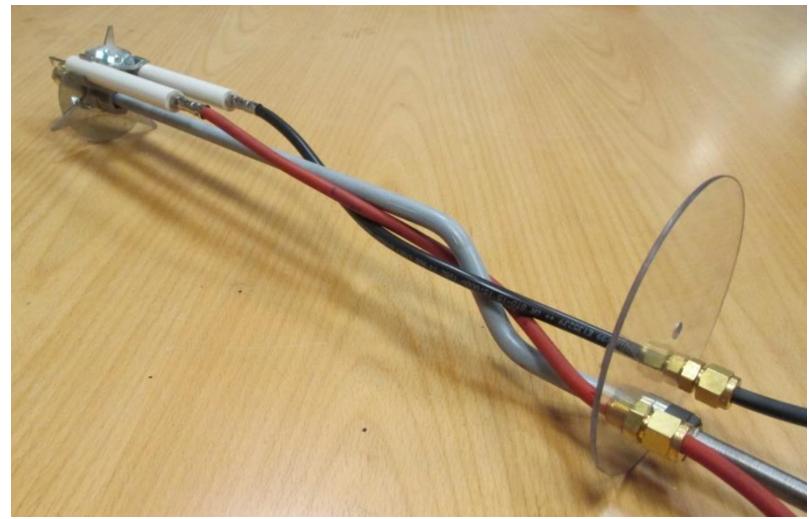
Flame Retention Head

Stator and Turbulator

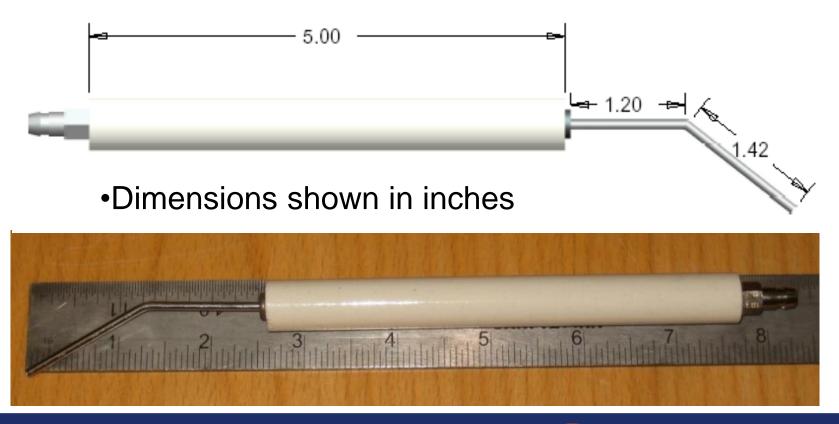
Seat Cushion Test Method Update IAMFTWG, June 19-20, 2013, Manchester, UK

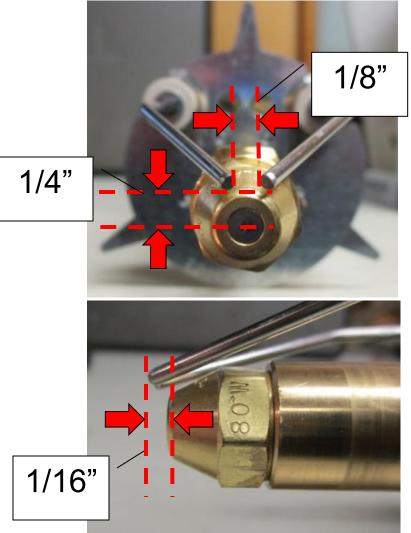
Flame Retention Head (FRH) and Static Plate

- F31 Flame Retention Head
 - Combusts air and fuel mixture in a swirling, efficient flame
 - Replaces turbulator
- Static Disk
 - Designed to control and even out air flow to the flame retention head
 - Replaces stator


Ignition Wires

- Wires should be wrapped tightly around fuel rod as shown in picture in order to minimize possible disruptions of airflow inside burner tube
- Wire lengths (tip of metal wire terminal to rear of draft tube)
 - Red: 12.5"
 - Black: 12.5"


Ignition Wire Routing Method

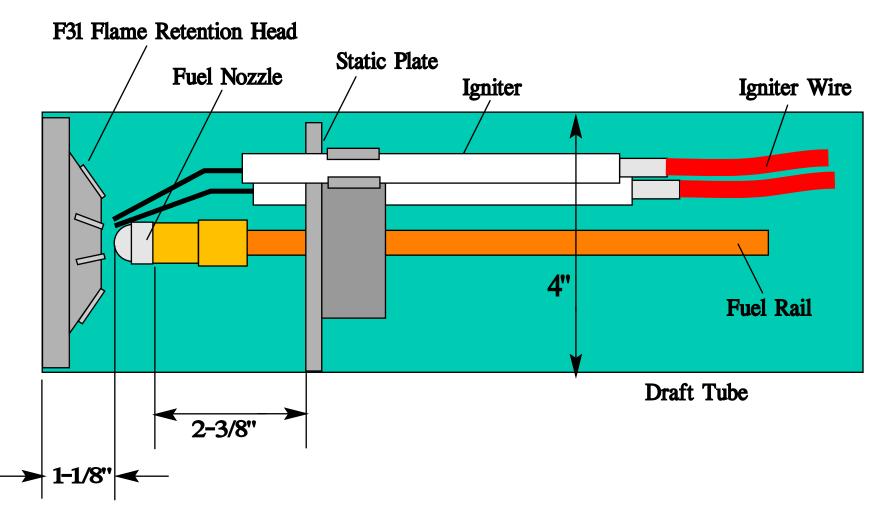

 Igniter dimensions should be approximately the same as those shown in the pictures below

Standardized Igniter Position

- Gap between igniters - 1/8"
- Nozzle center to igniters
 ¹⁄₄"
- Nozzle face to igniter tips
 1/16"

Draft Tube Assembly

- Top: Modified draft tube shown with machined groove to allow for spacer sleeve and FRH
- Bottom: Spacer sleeve fits into draft tube to ensure static plate and fuel rod are centered in draft tube

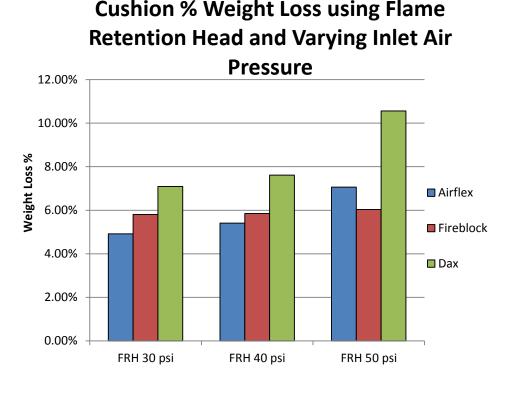

Draft Tube Assembly

- Top: FRH is press fit onto the spacer sleeve
- Bottom: The FRH and spacer sleeve assembly is pressed into the burner draft tube until the face of the FRH and end of the draft tube are flush

Burner Settings

Seat Burner Settings

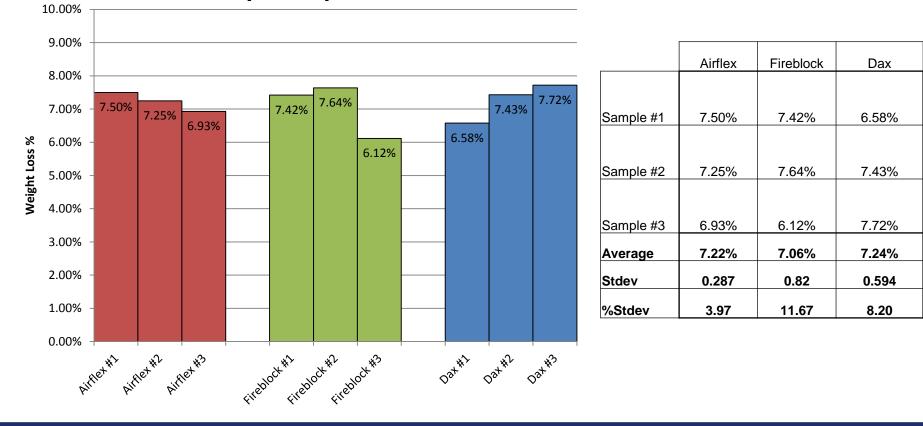
- Fuel Nozzle: Delavan 2.0 gal/hr 80° spray pattern W "all purpose"
 Face of FRH to nozzle tip: 1-1/8"
- Fuel nozzle adapter to static plate: 2-3/8"
- Static Plate Angle: centerline of igniters at 0°
 - Looking into the cone of the burner from above, the centerline between the igniters will be at 0° on the burner reference plane
- Fuel pressure: 108 psi (+/- 4 psi)
 - Pressure used as a starting point when checking fuel flow rate
- Air pressure: 45 psi
- Air Temperature: 40-60°F
- Fuel Temperature: 32-52°F
- Internal settings identical to the cargo sonic burner


Development of Burner Settings

- Began with manufacturer's recommend settings for placement of static plate and igniters
- Air pressure
 - 30 40, 50, psi tested initially
 - 45 psi produced the most repeatable results which were consistent with Park burner results
 - Same air pressure used on cargo burner
- Nozzles
 - Delavan B (solid spray pattern)
 - Delavan A (hollow spray pattern)
 - Delavan W (all purpose spray pattern)
 - W nozzle selected based on cargo and seat burner test results

Initial Testing Results

- Initial tests show that increasing air inlet pressure tends to increase percent weight loss
- Different combinations of air pressures and fuel nozzles were tested
- Initial tests using the solid spray pattern nozzle at different air pressures did not produce desirable results



Time (sec)

Final Testing Results

% Weight Loss for each Cushion Sample Set Tested using Delavan W nozzle and 45 psi air pressure

2012 Round Robin Update

- Round robin began April 2012
- FAA provided each lab with a fuel nozzle, burner setup instructions, and seat cushion test specimens

6 labs returned data results

- Goal was to meet or exceed the repeatability of the Park burner
- Wide range of different results between the labs
- Other factors besides burner impacting results? (ventilation?)
- 2012 RR considered completed at this time

2013 Seat Test Round Robin using FRH

- Initial FRH testing completed at FAA lab
- RR will need to be conducted to confirm repeatability of FRH between different labs
- Parts needed to convert current sonic burner design to use FRH will be provided by FAA
 - Test cushions will also be supplied
- Need willing participants for upcoming 2013 seat burner round robin!

Planned Activities

- 2013 seat sonic burner RR using FRH
 - Ship parts and samples to labs willing to participate
- Finalize FRH Settings
 - Burner settings can be finalized when all RR results are returned to FAA
- Finalize leather seat restraints
 - To be completed when burner settings are finalized
- Thermocouple degradation
 - Continue testing for methods of limiting inaccurate readings due to thermocouple heat cycling

Questions?

