Contamination of Thermal Acoustic Insulation Study Update (Transport Canada Study)

INTERNATIONAL AIRCRAFT MATERIALS FIRE TEST WORKING GROUP MEETING, Manchester, UK June 20, 2013

Contents

- Background
- Objectives
- Survey Technique
- Survey Data
- Flammability Testing
- Study Findings
- Study Observations

Background

- Following the Swissair MD-11in-flight fire accident in 1998, flammability requirements for TAI have been improved
- However, some contaminants on TAI are known to be flammable
 - Dust/lint, Hydraulic Oil and Corrosion Inhibiting Compounds shown to be flammable in Transport Canada studies
 - There has been many contaminated TAI fire events, including the significant in-flight Dust/lint fire on a Tristar near Goose Bay in 1991
- This study looks closer at contamination on TAI and EWIS

Objectives

• Conduct aircraft surveys to:

- Measure dust/lint accumulation rate based on hours and cycles
- Identify factors influencing dust/lint accumulation rate

Conduct flammability testing to:

Establish indicative flammability threshold for dust/lint (g/m²)

Survey Technique

- 1. Remove Cabin and Cargo Bay lining panels
- 2. Visually identify area with heaviest dust/lint contamination on TAI
- 3. Extract dust/lint sample(s) 50mm x 50mm
- 4. Establish hours and cycles since specific area last cleaned
- 5. Investigate reasons for any variation in dust and lint contamination levels
- 6. Look for other contaminants hydraulic oil, corrosion inhibiting compounds, etc

Survey Data

• 12 aircraft surveyed incorporating:

- 10 aircraft types
- All turbojets
- Short, medium and long haul
- Economy, business and first class cabins
- 6 different MROs

Summary of Surveys

SURVEY NO.	A/C SIZE	ENGINE TYPE	OPERATION	MAXIMUM DUST/LINT LEVEL (g/m ²)	CABIN CLASS
1	Narrow Body	Turbojet	Short Haul	-	Economy
2	Narrow Body	Turbojet	Short Haul	41	Economy
3	Narrow Body	Turbojet	Short Haul	-	Economy
4	Wide Body	Turbojet	Medium Haul	-	-
5	Narrow Body	Turbojet	Short Haul	-	Economy
6	Narrow Body	Turbojet	Short Haul	-	Economy
7	Wide Body	Turbojet	Long Haul	59	Business
8	Narrow Body	Turbojet	Short Haul	-	Economy/QC
9a	Wide Body	Turbojet	Long Haul	124	Economy
9b	Wide Body	Turbojet	Long Haul	72	Business
9c	Wide Body	Turbojet	Long Haul	155	Economy
10a	Narrow Body	Turbojet	Short Haul	6	Economy
10b	Narrow Body	Turbojet	Short Haul	12	Economy
11	Wide Body	Turbojet	Medium Haul	-	-
12a	Wide Body	Turbojet	Long Haul	35	Economy
12b	Wide Body	Turbojet	Long Haul	50	Business
12c	Wide Body	Turbojet	Long Haul	6	First

Survey Data

- Hidden Areas with highest density of dust/lint
 - Behind dado panel just above cabin floor
 - In cheek just below cabin floor
 - Near outflow valves and air recirculation inlets

Cleaner Areas

- Avionics bay
- Flight deck (based on limited opportunities)

See following photographs:

Typical Dust/Lint above cabin floor behind Dado panel

Typical Dust/Lint below cabin floor

Contaminated EWIS and TAI in cheek near air recirculation inlet

Avionics Bays - EWIS and TAI much cleaner

Dust/lint accumulation appears to correlate better with Hours than Cycles

Flight Hours

Flight Cycles

Dust/lint accumulation rate appears to be greater adjacent to economy class than business class

Economy Class

Business Class

Survey Data

Other TAI Contamination

- Hydraulic oil one occurrence found
- Corrosion Inhibiting Compound none found
- Food wrappers relatively common

TAI Degradation

- Moisture degradation of TAI at door surround one occurrence found
- Moisture degradation of TAI in keel one occurrence found

See Following photographs:

Food wrappers behind cargo bay linings

Moisture degraded TAI at door surround

Flammability Testing

- Transport Canada Arc Test Rig Used
 - Dust/lint laid on Kapton/fiberglass blanket
 - Ambient temperature 20 deg C (no radiant heat)
 - Sample at 20 degrees from horizontal

Flammability Testing

Test Results

DUST/ LINT LEVEL (g/m ²)	SAMPLE ATTITUDE	DUST/LINT IGNITED	AFTER- FLAME TIME (s)	PROPAGATION DISTANCE (inch)	TEST RESULT
120	Horizontal	Yes	2.4	1.1	PASS
120	20 deg from horizontal	Yes	7.2	1.9	FAIL
80	20 deg from horizontal	Yes	12.1	2.1	FAIL
40	20 deg from horizontal	Yes	10.3	2.5	FAIL
20	20 deg from horizontal	Yes	0.6	1.0	PASS
20	20 deg from horizontal	No	0.0	0.0	PASS

- Pass/Fail criteria similar to FAA Radiant Panel Test
 - FAIL if ignition occurs and flame propagates 2 or more inches, or for 3 seconds or more

- The threshold level required for dust and lint to be ignitable by an electrical arc and propagate, when contaminating the surface of TAI at ambient temperature, is in the region of 20 g/m²
- Levels of dust and lint above this threshold were observed on EWIS and TAI on the majority of aircraft surveyed

See following graph:

- No significant levels of dust and lint or other contaminants were observed on EWIS or TAI in aircraft avionics bays.
- Cleaning intervals might be longer than are necessary to ensure dust and lint is kept below the level anticipated by current applicable guidance/advisory material.

- Once ignited, dust and lint at ambient temperature burned with a relatively weak flame. The heat flux output from such a flame and the propensity of the flame to propagate to other aircraft materials, has not been explored in this study.
- In some locations, dust and lint contamination on EWIS coexisted with large amounts of dust and lint on TAI, giving rise to a propagation risk in the event of electrical arcing.

- A precise dust and lint accumulation rate was not established in this study due to limited data.
- Dust and lint accumulation appears to be related more closely to flight hours than cycles.
- The rate of dust and lint accumulation appears to be greater adjacent to economy class than business class cabins and greater adjacent to business class than first class cabins.

Study Observations

- Cabin EWIS and return air routings do not appear to be optimised to minimise ignition risk in conjunction with dust and lint accumulation.
- Relatively simple design features might be considered for future aircraft to reduce dust and lint accumulation on EWIS or to protect EWIS from dust and lint accumulations.

