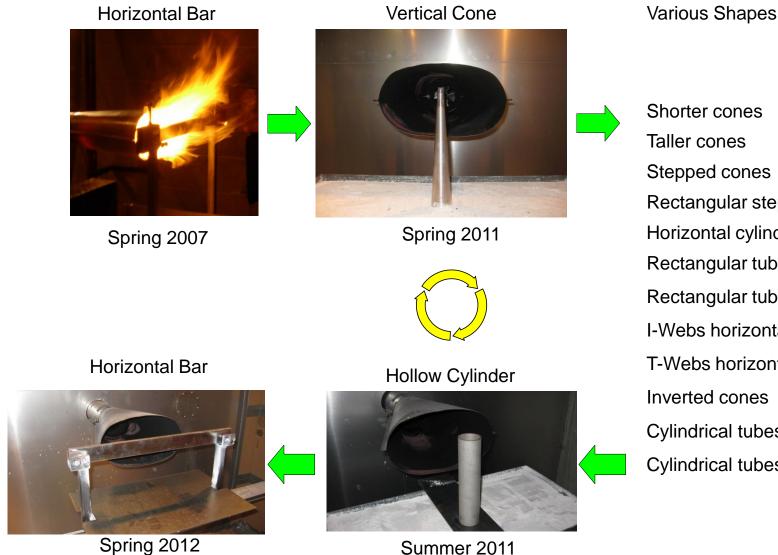
International Aircraft Materials Fire Test Working Group Meeting

Development of a New Flammability Test for Magnesium-Alloy Seat Structure

Presented to: International Aircraft Materials Fire Test Working Group, Manchester, England


By: Tim Marker, FAA Technical Center

Date: June 19-20, 2013

Federal Aviation Administration

Evolution of the Test Configuration

Shorter cones Taller cones Stepped cones Rectangular stepped shape Horizontal cylinders Rectangular tubing horizontal Rectangular tubing vertical I-Webs horizontal **T-Webs** horizontal Inverted cones Cylindrical tubes horizontal Cylindrical tubes vertical

Which Configuration?

Hollow Cylinders (vertical): 59 Tests

Rectangular Bars (horizontal): 137 Tests

Comparison of %RSD of Cylinder and Bar Tests

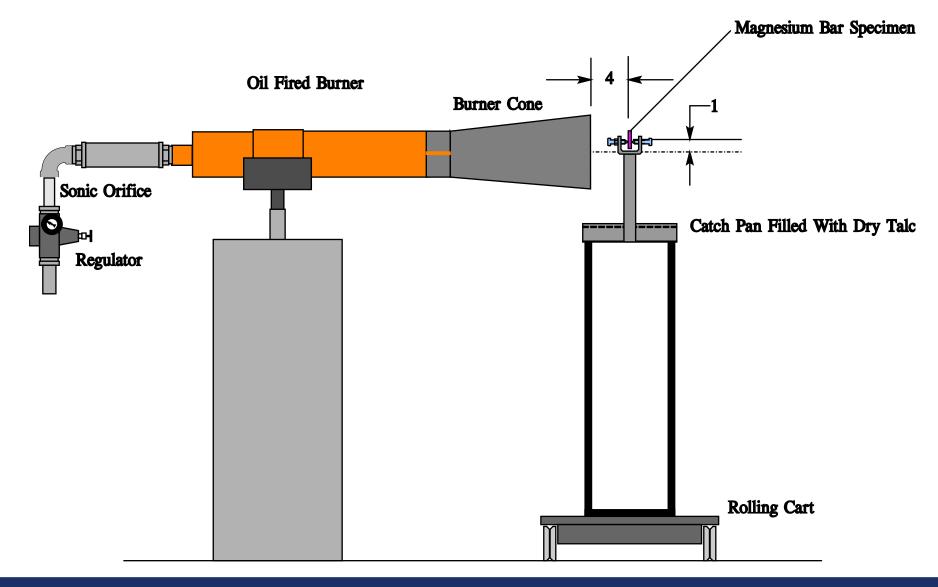
	EL	-21	
	Cylinder		
	Begins		
	to Burn	Cylinder	
	(Sec)	Out	
Average	108.0	310.1	
Std Dev	114.0	86.4	
% RSD	105.5	27.9	$\mathbf{\nabla}$
		-43	
	Cylinder		
	Begins		
	to Burn	Cylinder	
	(Sec)	Out	
Average	69.3	248.8	
Std Dev	67.3	34.1	
% RSD	97.2	13.7	\sim
	75	44	
	ZE	-41	
	Cylinder	-41	
	Cylinder Begins		
	Cylinder Begins to Burn	Cylinder	
Average	Cylinder Begins to Burn (Sec)	Cylinder Out	
Average Std Dov	Cylinder Begins to Burn (Sec) 167.9	Cylinder Out 573.7	
Std Dev	Cylinder Begins to Burn (Sec) 167.9 43.3	Cylinder Out 573.7 363.9	
	Cylinder Begins to Burn (Sec) 167.9	Cylinder Out 573.7	Λ
Std Dev	Cylinder Begins to Burn (Sec) 167.9 43.3 25.8	Cylinder Out 573.7 363.9	Λ
Std Dev	Cylinder Begins to Burn (Sec) 167.9 43.3 25.8	Cylinder Out 573.7 	Λ
Std Dev	Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ	Cylinder Out 573.7 	Λ
Std Dev	Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 AZ Cylinder	Cylinder Out 573.7 	Λ
Std Dev	Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 25.8 AZ Cylinder Begins	Cylinder Out 573.7 <u>363.9</u> 63.4 -80	Λ
Std Dev	Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 25.8 Cylinder Begins to Burn	Cylinder Out 573.7 -363.9 -80 -80 Cylinder	Λ
Std Dev % RSD	Cylinder Begins to Burn (Sec) 167.9 43.3 25.8 25.8 AZ Cylinder Begins to Burn (Sec)	Cylinder Out 573.7 -363.9 -80 -80 -80 -80 -80	Λ

Bars

Cylinders

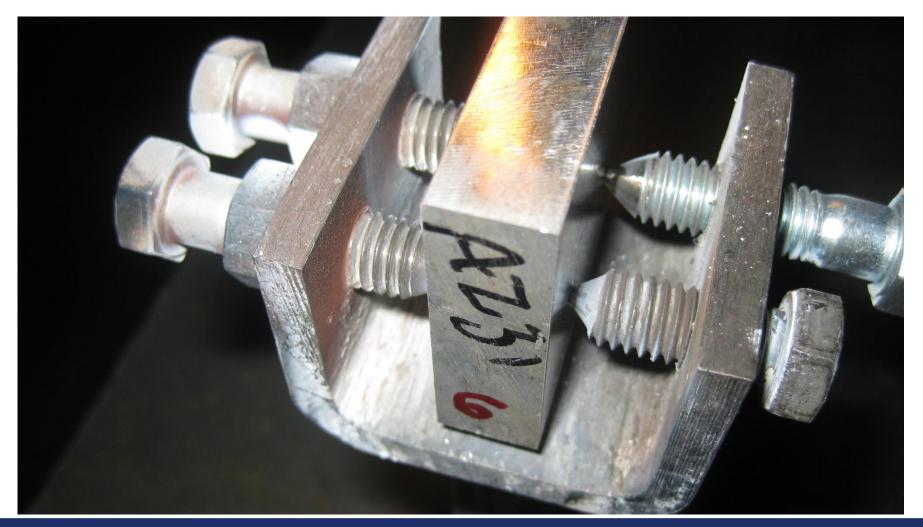
	0.25	50-Inch El	-21	0.3	75-Inch EL	-21	0.500-Inch EL-21								
	Bar Begins			Bar Begins			Bar Begins								
	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight						
	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)						
Average	196.8	288.6	1.1	66.4	111.4	0.7	35.6	67.5	0.8						
Std Dev	10.9	28.4	0.8	113.5	190.5	0.7	100.8	126.0	0.7						
% RSD 🤇	5.5	9.8	70.5	170.8	171.0	103.3	282.8	186.7	94.2						
	0.25	0-Inch WI	E-43	0.37	5-Inch WI	E-43	0.	500-WE-4	43						
	Bar			Bar			Bar								
	Begins		Matche	Begins		10/10/10/10	Begins		14/21/14						
	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight						
	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)						
Average	149.9	284.4	1.6	214.3	306.8	1.3	235.4	317.6	5.5						
Std Dev	73.4	140.0	1.6	14.9	73.3	1.7	98.1	149.4	8.6						
% RSD	49.0	49.2	102.3	7.0	23.9	136.2	41.7	47.0	155.5						
	0.24	50-Inch ZE	-41	0.3	75-Inch ZE	-41	0	.500-ZE-4	1						
	Bar			Bar			Bar								
	Begins			Begins			Begins								
	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight						
	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)						
Average	193.4	323.4	33.1	59.3	80.0	27.5	250.3	364.8	17.6						
Std Dev	49.5	60.5	12.3	118.5	160.0	2.0	201.3	207.5	8.7						
% RSD 🤇	25.6	18.7	37.1	200.0	200.0	7.3	80.4	56.9	49.7						
	0.2	50-Inch Az	2-80	0.3	75-Inch Az	2-80	0	.500-AZ-8	0						
	Bar			Bar			Bar								
	Begins			Begins			Begins								
	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight	to Burn	Bar Out	Weight						
	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)	(Sec)	(Sec)	Loss (%)						
Average	152.9	394.3	51.6	209.6	467.3	38.9	194.3	439.0	33.9						
Std Dev	15.4	50.3	3.7	13.7	174.7	4.9	104.9	315.9	11.0						
% RSI	10.1	12.8	7.2	6.5	37.4	12.6	54.0	72.0	32.4						

Vertical Cylinder vs. Horizontal Bar Summary


Data indicates horizontal bar configuration more repeatable

Bar samples easier/less expensive to produce!

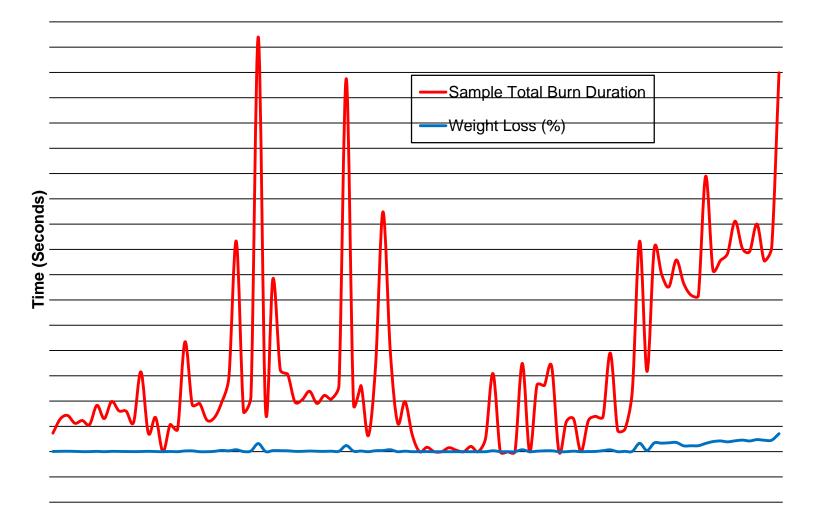
Updated Horizontal Bar Testing Rig



Updated Horizontal Bar Testing Rig

Updated Horizontal Bar Testing Rig

Eliminate measurement of residue ignition & extinguishment time



When is it "Out"?

Burn Duration vs. Weight Loss .250-Inch Thickness Bars

What has been done since last meeting?

$\sqrt{\text{Additional tests conducted}}$

Ran an additional 99 tests for grand total of 521 tests

 \checkmark Draft test method completed

-Sample thickness: 0.250 inches

-Burner exposure time: 4 minutes

-Minimum time for sample to burn: 2 minutes

-Maximum time for sample to self extinguish: 3 minutes after burner off

-Maximum weight loss: 6% to 10% (replaces time measurement of residue burning)

 $\sqrt{\text{Round Robin II completed}}$

How Repeatable is the Data?

Weight Loss (%)	1.8	0.7	0.0	1.1	0.0	3.0 4 0	, c	0.0	0.0 1 E	6.1 6.1	4.1	9.3	0.8	3.3	38.7	0.8	5.3	4.9	4.4	1.0 1 A	0.1	2.0	1.6	2.4	2.0	29.1	2:4	3.2	4.8	5.5	9.3	0.0	2.4	0.0	0.4	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+.+ •		0.0	9.3	0.0	2.4	4.1	4.4	0.0	0.0	0.0	
Bar Out (Sec)	248	305	0	320	323	340	380	305	260	300	365	340	365	315	470	350	330	395	410	390	330	375	420	405	295	380	385 07r	3/5	387	360	435	320	327	240 0	0 174	0	0	175	163	0	176 î	0 00F	285		0	- C	386	0	310	351	388	0 170	375	0	
Bar Begins to Burn (Sec)	159	143	0	191	234	140	151	151		153	155	146	176	149	146	154	143	181	154	4CL	148	146	153	154	151	155	163	0GT	146	151	176	183	179	161 6	153	<u>8</u> c	0	156	156	oį	151 6	110	167	<u>ò</u> c			186	0	211	161	180	10	101	0	
Alloy	WE-43		E-43	E-437/	п-43 А	E-43 E/43	4-43 43	/E-43	С 1 -1-	П-45 С4-1	Е-43 -43	Е-43	E-43	E-43	E-43	E-43	E-43	E-43	Е-43 45	Б-43 Б-43	ц 143 143	Е-43 143	E-43	E-43	E-43	E-43	Е-43 10	П-43	E-43	E-43	E-43	E-43	E-43	С 27 27 24 1	Е-43 Е-43	F-43	E-43	E-43	E-43	E-43	Е-43	Е-43 1 43	E-43	с , 43	F-43	E-43	Б-43 F-43	E-43							
Date	5/16/2012	5/16/2012	5/16/2012	5/16/2012	6/6/2012	6/6/2012	8/11/2012	8/14/2012	0/14/2012	∠FUZ/FI/0	8/16/2012	8/16/2012	8/16/2012	8/16/2012	<u>/</u> 8/17/2012	/ 8/17/2012	8/17/2012	8/17/2012	8/11//2012	C 102/02/8	8/21/2012	8/21/2012	8/21/2012	8/21/2012	8/21/2012	8/21/2012	8/22/2012	C107/77/8	8/22/2012	8/22/2012	8/29/2012	8/29/2012	8/29/2072	9/11/2012	9/11/2012	9/11/2012	9/11/2012	9/12/2012	9/12/2012	9/12/2012	9/12/2012	9/12/2012	21.02/21./6	9/24/2012	9/24/2012	9/24/2012	9/24/2012	9/24/2012	9/24/2012	9/24/2012	9/24/2012	9/24/2012	9/26/2012	9/26/2012	
																	/	/													/																								

Example of some of the data recorded during tests

Zeros inserted when sample does not burn

How Repeatable is the Data?

	0.250-lnch WE-43								
	Bar								
	Begins								
	to Burn	Bar Out	Weight						
	(Sec)	(Sec)	Loss (%)						
Average	146.0	264.0	2.4						
Std Dev	83.8	150.5	5.0						
% RSD	57.4	57.0	204.8						

0.250-Inch WE-43 Bar **Begins** Bar Out Weight to Burn Loss (%) (Sec) (Sec) Average 184.4 353.6 3.9 Std Dev 37.5 53.4 5.9 % RSD 20.3 15.1 151.4

Original Data with Zeros when bar doesn't burn (107 Tests)

Modified Data with Zeros removed (67 Tests)

Systematic Development of Lab-Scale Test

Determine basic configuration: solid cone, vertical cylinder, horizontal bar

Make improvements to test apparatus: mounting mechanism, depth of talc

Determine which parameters to measure: e.g., time to melt, time to ignite sample, time residue burns, time sample self-extinguishes, time residue self-extinguishes, weight loss

Determine if weight loss is good predictor of residue burn duration

Select appropriate test parameters

Select appropriate thickness of sample

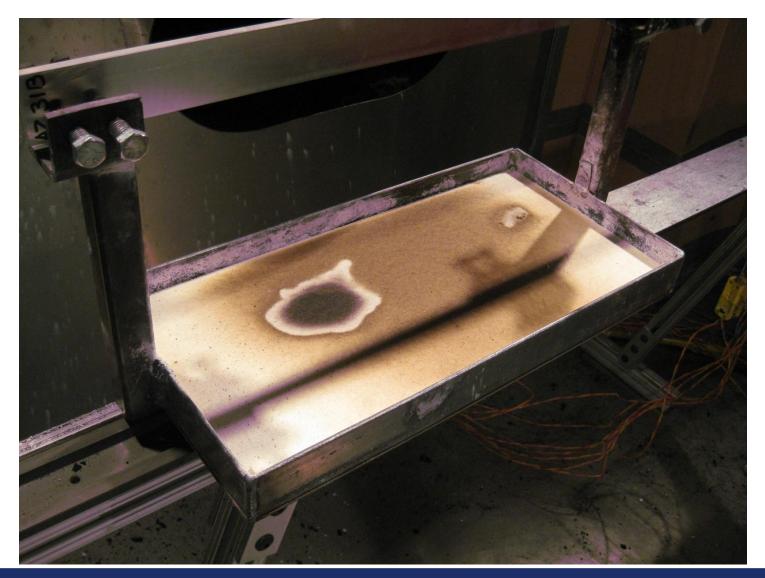
Determine interlab repeatability via Round Robins

Determine influence of exhaust ventilation on test results

Determine other sources of error and correct

Finalize all test parameters and details

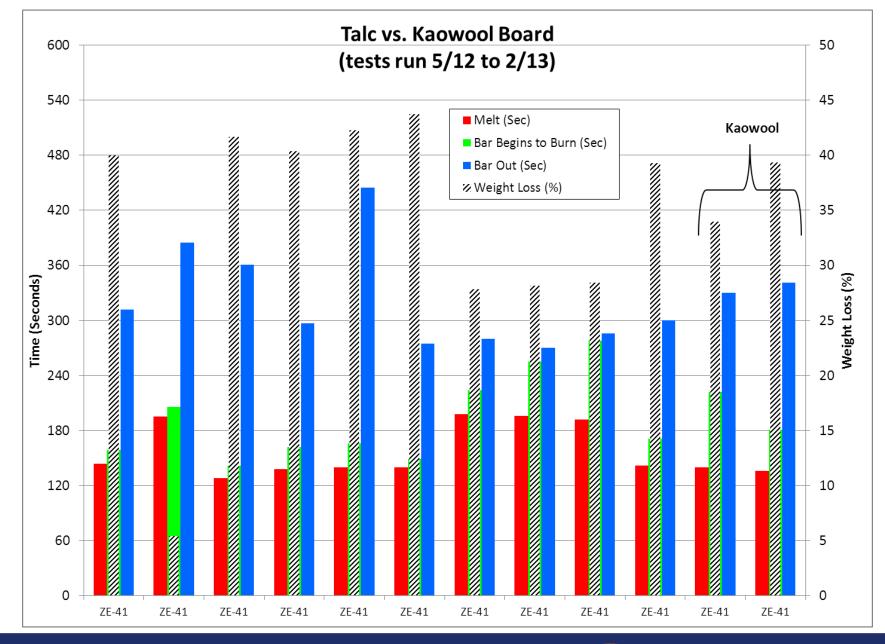
What is Left to Do??


Determine Influence of Catch Pan Material on Residue Burn Duration

Impact of Pre-loading a Curved Sample on Test Results

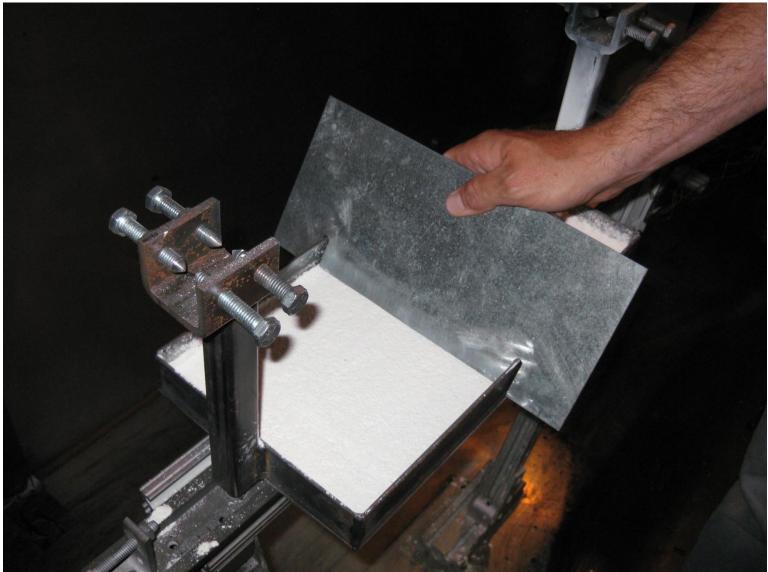
What is the Impact of Ventilation in the Testing Area?

Determine Influence of Catch Pan on Residue Burn Duration



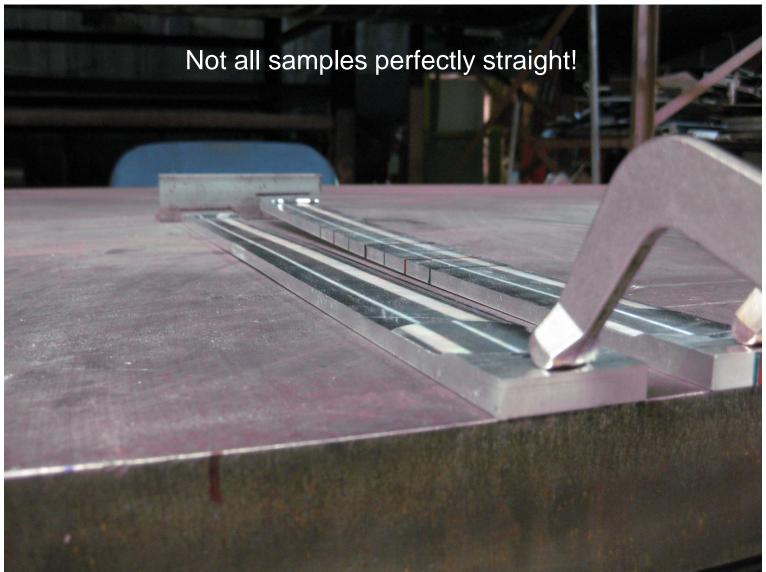
Burned Sample Residue on Rigid Kaowool Board

Impact of Talc Versus Rigid Kaowool in Catch Pan

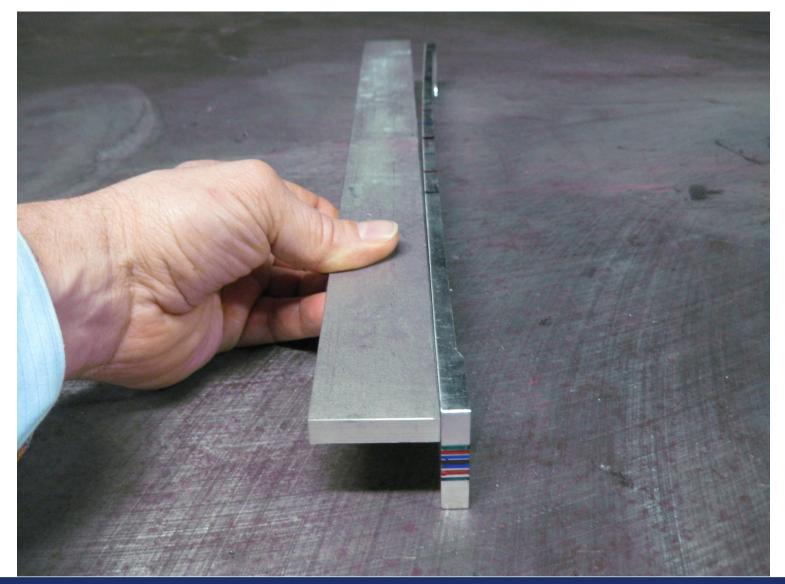

The use of rigid Kaowool board had no apparent impact on test results compared to a 0.25-inch layer of talc in catch pan.

During test method development, a 1-inch layer of talc was used. This depth allowed molten residue to bury below the surface and continue to burn (insulated).

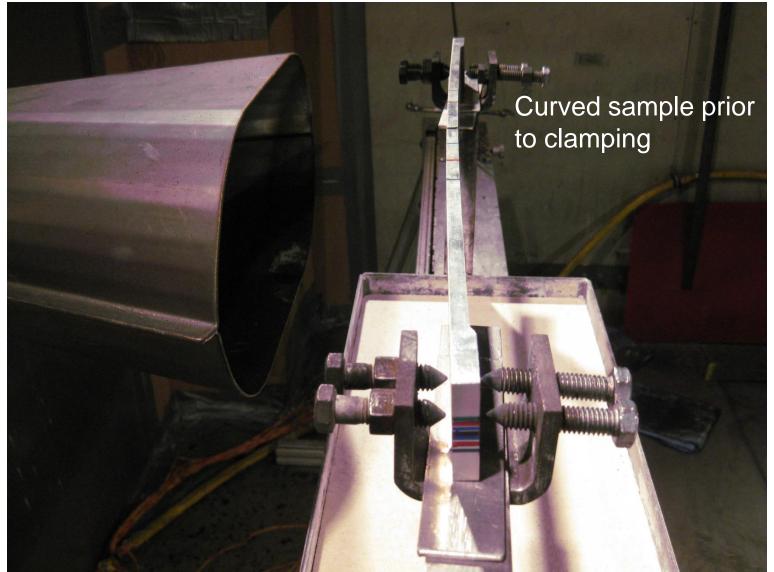
If the 0.25-inch talc depth is adhered to, results will not be impacted. Recommend using a "screed" device to set proper talc depth.



Screed Device for Leveling Talc and Setting Depth



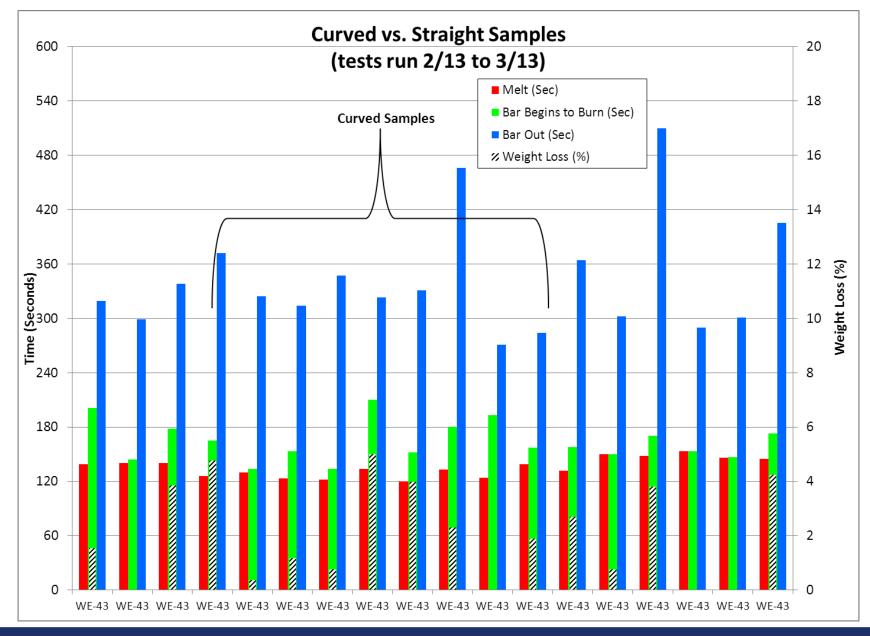
Impact of Curved Sample on Test Results



Impact of Curved Sample on Test Results



Impact of Curved Sample on Test Results



Pre-Loaded Sample

Impact of Pre-Loading Curved Samples vs. Straight Samples

Slight impact on melt time?

Average melt time for straight sample: 143.7 seconds

Average melt time for curved sample: 127.9 seconds

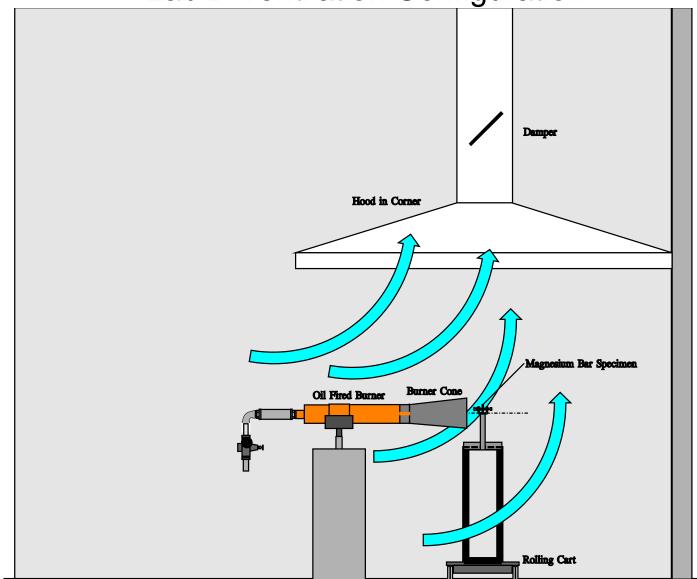
No impact on time to begin burning

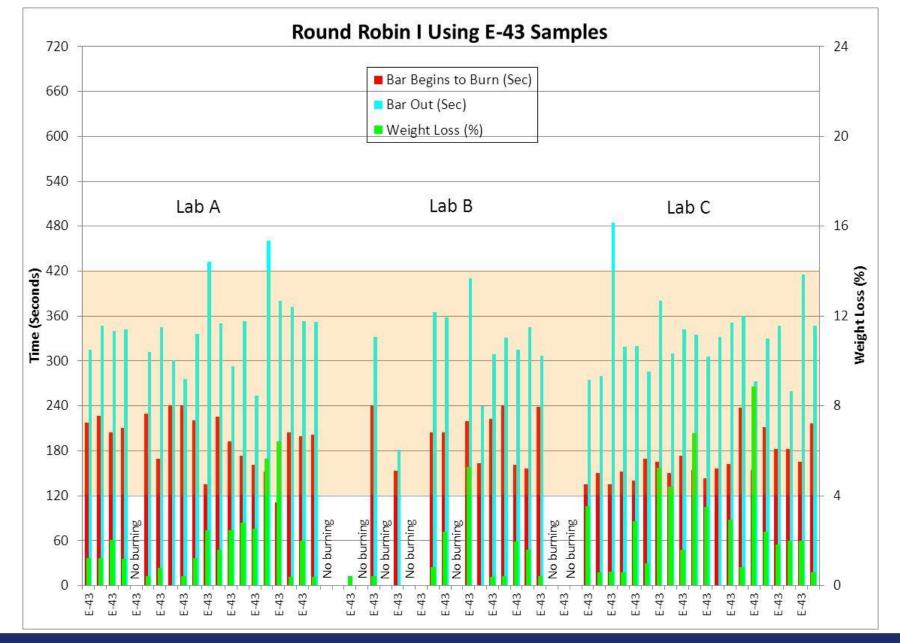
Average time to begin burning for straight sample: 163.8 seconds

Average time to begin burning for curved sample: 164.2 seconds

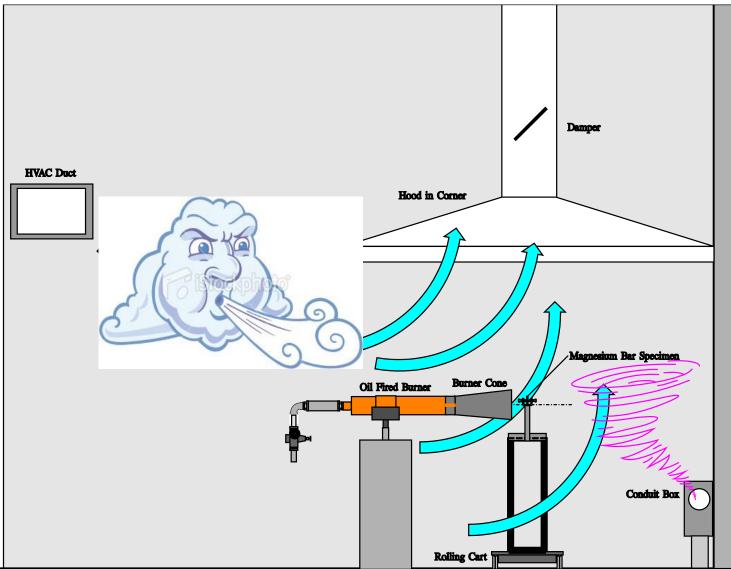


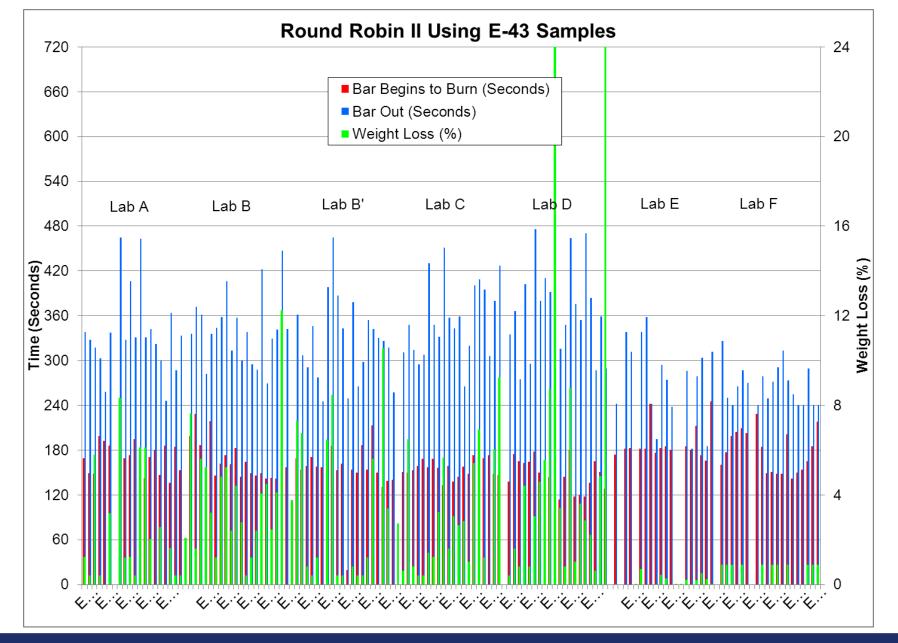
What is the Impact of Ventilation in the Testing Area?

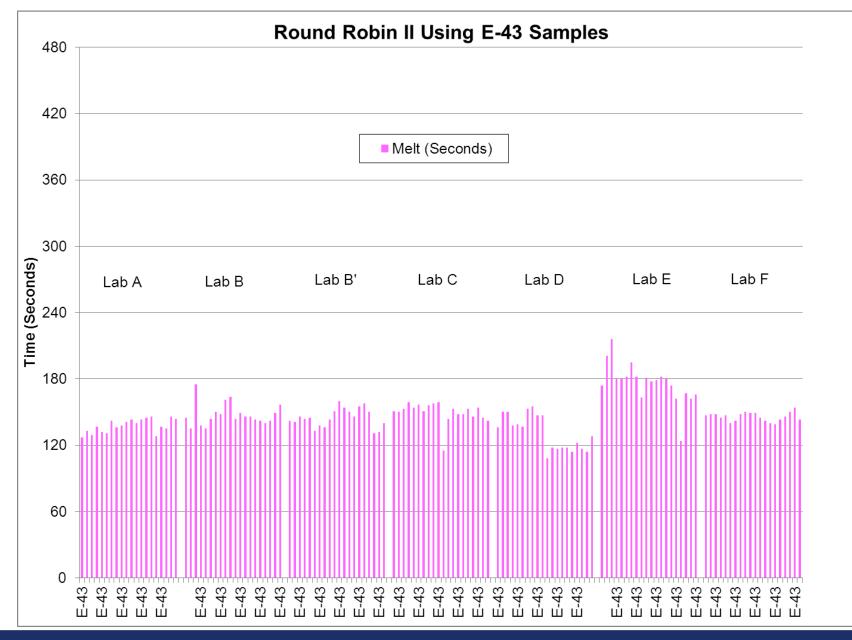


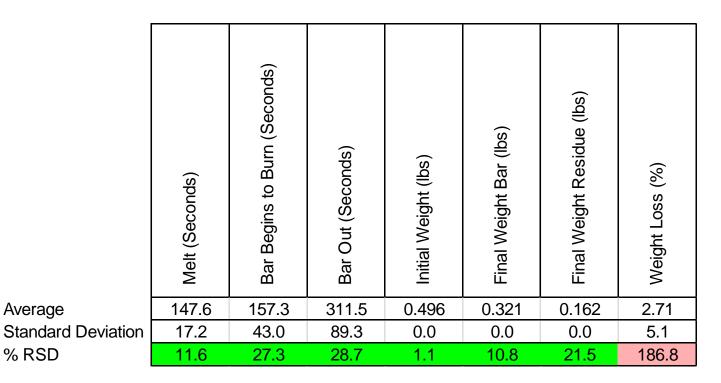


Lab B Ventilation Configuration

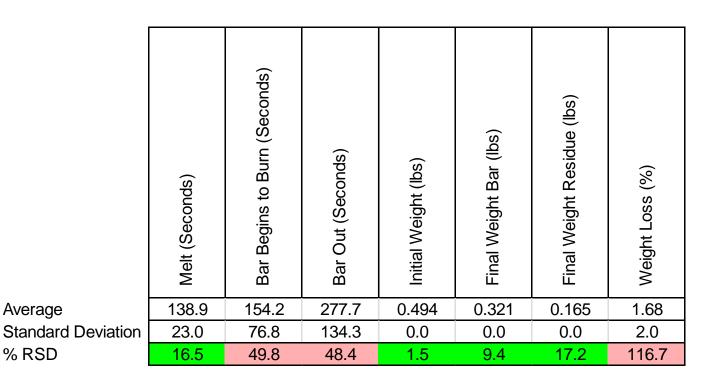





Lab B Ventilation Issue Resolved



RRII Statistics


7 Labs, 140 tests

RRI Statistics (for comparison...)

3 Labs, 60 tests

Comparison of RRI and RRII

Additional labs = more data = greater ability to determine problem areas

% RSD of time for sample to burn decreased

% RSD of time for sample to self-extinguish decreased

% RSD of weight loss increased

1. Weigh the sample prior to test

2. After test, weigh the remaining bar sample pieces

3. Remove and weigh re-solidified material from catch pan

Initial Wt of Sample – (Final Wt of Sample + Residue)

Wt Loss % =

X 100

Initial Wt of Sample

Planned Activities and Next Steps?

Refine method of determining when sample begins to burn

Refine method of determining when sample self-extinguishes

Refine method of measuring post-test weights

Complete analysis of Round Robin II

Complete report on test method development

Finalize draft test method

Insert new test method into Handbook?

DOT/FAA/AR-11/3

Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division Atlantic City International Airport New Jersey 08405 Evaluating the Flammability of Various Magnesium Alloys During Laboratory- and Full-Scale Aircraft Fire Tests

Timothy R. Marker

January 2013

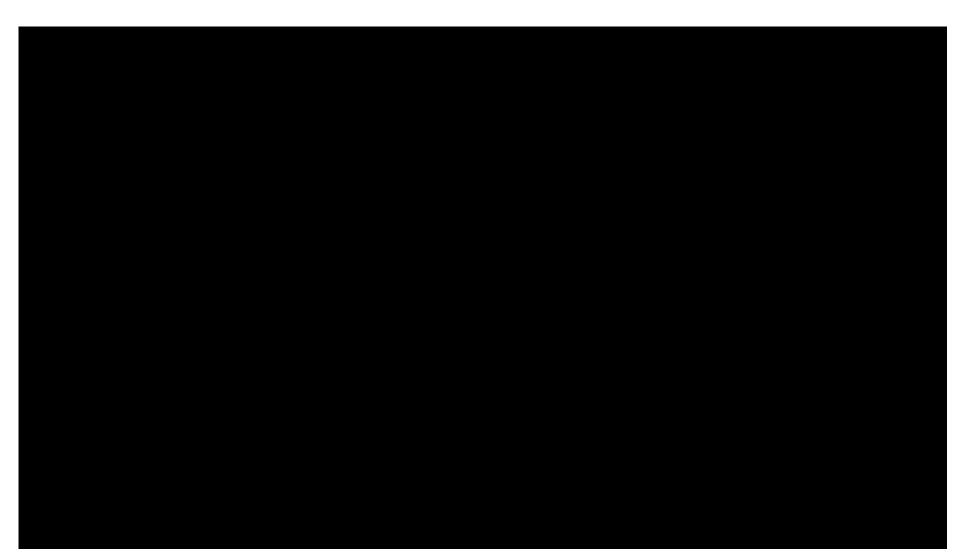
Final Report

This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161.

This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation Federal Aviation Administration

Task Group Session on Seat Structure Test June 19, 2013


http://www.fire.tc.faa.gov/pdf/AR11-13.pdf

Questions?

Determining Time Sample Begins to Burn & Self Extinguishment

