COMPOSITE MATERIAL FIRE FIGHTING

Presented to: International Aircraft Materials Fire Test Working Group Pooler, GA, USA

Presented by: John C. Hode SRA International

Date: March 1-2, 2011

Federal Aviation Administration

Development of a Fire Test Method

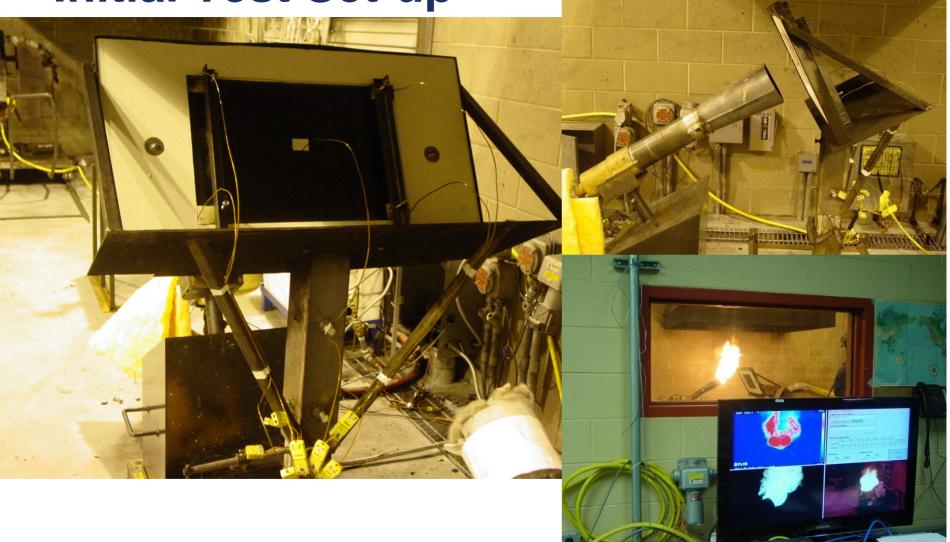
Purpose:

• Create a repeatable test method to quantitatively assess the amount of fire fighting agent necessary to extinguish aircraft structural materials.

First objective:

 Determine the conditions for self-sustained fire.

Second objective:


•Develop a method to apply various fire suppression agents.

•Establish the quantity of agent (water & foam)necessary to extinguish a self-sustaining aircraft fire.

•Determine the effectiveness of various agents.

Initial Test Set-up

Small & Intermediate Scale Testing

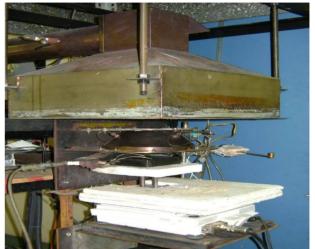
• Baseline intermediate scale tests conducted to see if results from initial test design are repeatable.

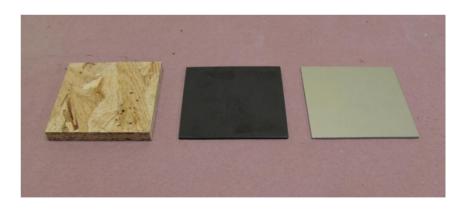
Small scale tests

- ASTM E1354 Cone Calorimeter
 - Data to support exterior fuselage flame propagation/spread modeling
- ASTM E1321 Lateral Flame Spread Testing (Lateral flame spread)

Small & Intermediate Scale Materials

- Carbon Fiber Reinforced Plastic (CFRP)
 - Unidirectional T-800/350°F cure epoxy, 16 ply quasiisotropic [0,-45,45,90]S2, nominal thickness of 3.2 mm (0.126 inch) Finished 60/40 fiber-resin


• Glass Fiber Reinforced Aluminum (GLARE) – GLARE 3-5/4-.3, 2.5 mm (0.098 inch) total thickness


- Oriented Strand Board (OSB)
 - Georgia Pacific Blue Ribbon®, nominal thickness of 14.7 mm (0.578 inches)
 - Flame spread rating of 150-200

Composite Skin Fire Characteristics and Suppression

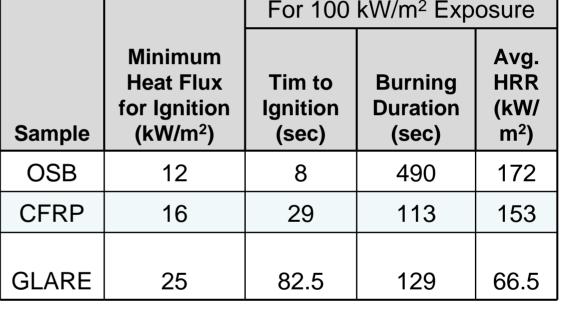
- Approach
 - Small scale materials testing
 - Results feed into fire model of combustion and propagation
 - Intermediate scale tests
 - Reduce reliance on large tests
 - Materials
 - Carbon/Epoxy (CFRP -B787)
 - Aluminum/Glass (GLARE A380)
 - Surrogate (wood board)

ASTM E1321 Lateral Ignition & Flame Spread

- Wood was the only material in which lateral flame spread was observed
- CFRP and GLARE some burning at seams

OSB

CFRP


GLARE

Small Scale Tests - Combustibility

- Composite Skin Materials Have Similar or Lower Combustible Properties compared to "Ordinary" Combustibles
- Compared to wood, composites:
 - Require more imposed energy to ignite
 - Ignite slower
 - Have a shorter duration of burning(due to smaller thickness)

OSB Exposed to Large Area Burner with Insulation Backing

Large Area Burner On

Burner Off – 0 seconds

Burner Off – 30 seconds

Burner Off – 60 seconds

Burner Off – 100 seconds

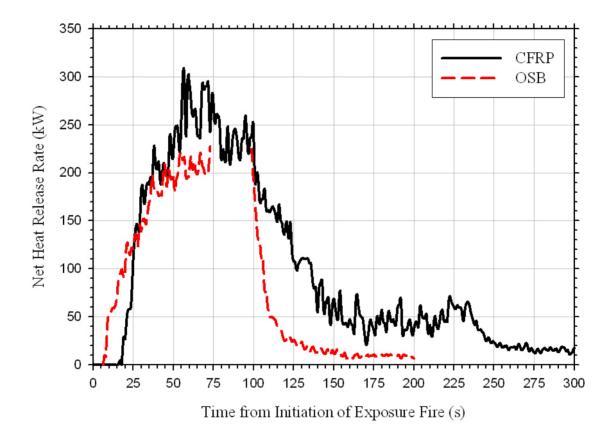
CFRP Exposed to Torch Burner with Insulation Backing

Torch Ignition

2.5 minutes after ignition

1 minute after ignition

4 minutes after ignition Torches Out


1.5 minutes after ignition

15 seconds after torches out

Comparison of CFRP & OSB Heat Release

CFRP Torch Test

- Exposure 180 kW/m2
- Duration 250 seconds (4 min 10 sec)
- Panel Ignition at 16 seconds
- HRR increased after ignition to peak of 300 kW over 60 seconds
- HRR decayed after 90 seconds to steadystate value of 50 kW
- Post-exposure burning for 37 seconds

Intermediate Scale Test Conclusions

- OSB vs. CFRP
 - Both materials burn and spread flame when exposed to large fire
 - Heat release rates and ignition times similar
 - The thicker OSB contributed to longer burning

Large Scale Implications

- OSB might be used as a surrogate for CFRP
- Flaming and combustion does not appear to continue after exposure is removed
 - Since there was no or very little post exposure combustion, no suppression tests performed as planned
 - Minimal agent for suppression of intact aircraft?

Qualifiers to Intermediate Scale Results

- Need to check GLARE
 - No significant surface burning differences anticipated (may be better than CFRP)
- Verify /check CFRP for thicker areas (longer potential burning duration)
- Evaluate edges/separations
 - Wing control surfaces
 - Engine nacelle
 - Stiffeners
 - Post crash debris scenario

Can a well established fire develop in a post-crash environment?

Overall Findings from Initial, Small and Intermediate Scale

- Flame propagation and self-sustained flaming does not significantly occur in the absence of external fire source.
- Epoxy off-gas is combustible.
- CFRP can smolder.
- Epoxy off-gas causes composite to swell through internal pressurization.
- OSB is potential surrogate for large scale tests to assess extinguishment test methods to save composites for data collection.

Scoping tests of parallel configuration

FIRST IDEA FOR COMPLEX GEOMETRY FIRE TEST SETUP

- 0.5 inch Oriented Strand Board (OSB) 9.5in x 24in and spaced 1" apart
- Ignition within 30 seconds
- Developed after 30-40 seconds then exposing flame secured
- Flames grew above rig
- Manual extinguishment after 1 minute
- Reignition occurred requiring second agent application for longer duration to completely suppress

Participation welcome

- Soliciting comments and ideas on:
 - Potential test configurations
 - Previous testing results and data
 - Sources for aviation-grade carbon fiber composites and FML
 - Other helpful ideas

