Radiant Panel Update

Presented to: International Aircraft Materials Fire Test Working Group Meeting By: Steven Rehn Date: 3/6/2018

Introduction

- Handbook update
 - Updated December 2017
- Electric Panel aging testing
 - Panel runs hotter as it ages, can affect test results
- Future Work

Handbook changes

- Removed air-propane panel
- Replaced Kaowool M with Superwool 607
- Removed voltage requirement
 - Previously said you must use 208V 3-phase or 240V single phase, replaced with 7574 Watt requirement
- Reduced ±5% error on heat flux to ±1% on Zero Position (P1 and P2 remain ±5%)
- 5 minute average on heat flux measurement

Radiant Panel Aging

- Temperature set point steadily increases to obtain same heat flux as panel ages – eventually leads to more material failures
- Biggest difference seems to be black paint on surface
- Need to add guidance about when to replace electric panel

Old Panel

- Planned to test if old panels can be refurbished by repainting the surface
- Run calibrations and material tests with new panel, old panel, and repainted old panel
- Test 15 samples with each panel setup 5 Polyimide, 10 Metalized PEEK
- Determine if repainted panel performs as well as a new panel

New Panel

Set Point: 1073°F Heat Flux: P0: 1.502 Btu/ft²s P1: 1.473 Btu/ft²s P2: 1.398 Btu/ft²s

Old Panel Set Point: 1121°F Heat Flux: P0: 1.503 Btu/ft²s P1: 1.493 Btu/ft²s P2: 1.408 Btu/ft²s

3/6/2018

Radiant Panel Insulation Test Update

• Polyimide material – 5 each

Old panel did not perform worse than new panel

Metalized PEEK material – 10 each

Old panel did not perform worse than new panel

- Did not attempt to repaint panel because it already performed as well as a new panel
- Possible Problems:
 - Panel is not as worn as it looks
 - Metalized PEEK is not as sensitive as previous material used
- Also haven't been able to acquire the same paint used on the panel surface when new

Previous Testing

 During 2015 round robin, the lab with the most test failures replaced their (over 10 year-old) panel and repeated their test

Old Panel: Set Point: 1211°F Heat Flux: 1.501 Btu/ft²s 7 material failures

New Panel:

Set Point: 1105°F Heat Flux: 1.501 Btu/ft²s 4 material failures

Previous Testing

Polyimide comparison

Old Panel

3/6/2018

Radiant Panel Insulation Test Update

New Panel

Previous Testing

- 15 Thermocouple array at test sample surface
- Measured surface temperatures with old panel, new panel, and at two different air gap configurations around the sliding platform
- In the open configuration:
 - Old panel had higher set point, 1158°F to 1089°F
 - Old panel had higher average surface temperature, 416°F to 374°F

Future Work

- Now have 4 old panels from 3 different labs
 - One panel is 12 years old!
- Also received new metalized PEEK material

Future Work

- Need to determine parameters of when a panel needs to be replaced
 - Measure emissivity of paint
 - Measure resistance of emitter strips
 - Set point increase compared to when panel was new
- Test 4 old panels and compare with new panels to determine which ones are out of spec and how do we know
- Discuss test plans in task group
- Refurbishing panel is secondary goal

Questions?

Contact:

Steven Rehn Federal Aviation Administration William J. Hughes Technical Center Fire Safety Branch, Bldg. 203 Atlantic City Int'l Airport, NJ 08405 (609) 485-5587 steven.rehn@faa.gov

