

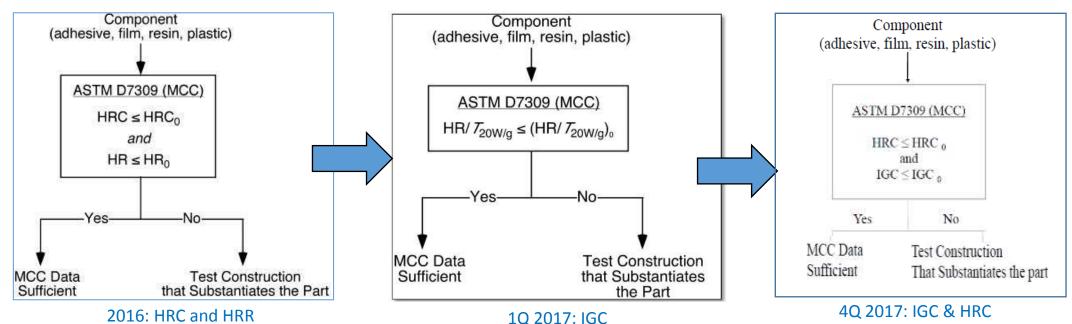
Microscale Combustion Calorimetry -Providing the Flammability Properties of Materials; a Key to Managing Fire Safety

IAMFTWG

March 6-7, 2018

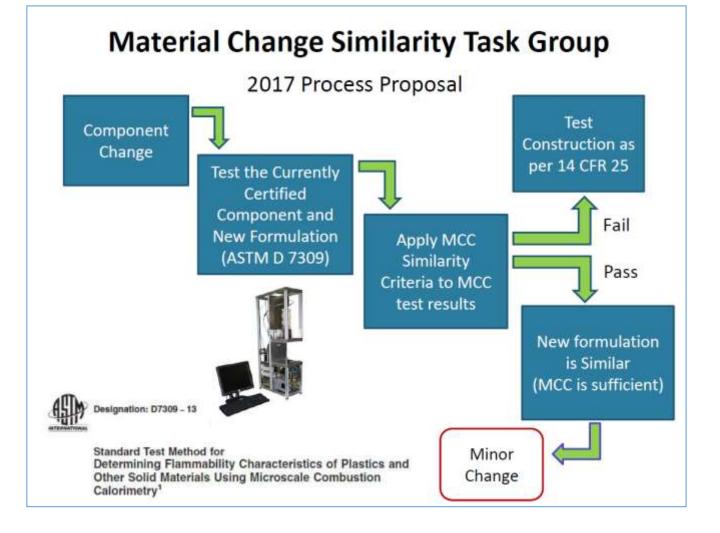
Savannah, GA

Daniel Slaton, Boeing

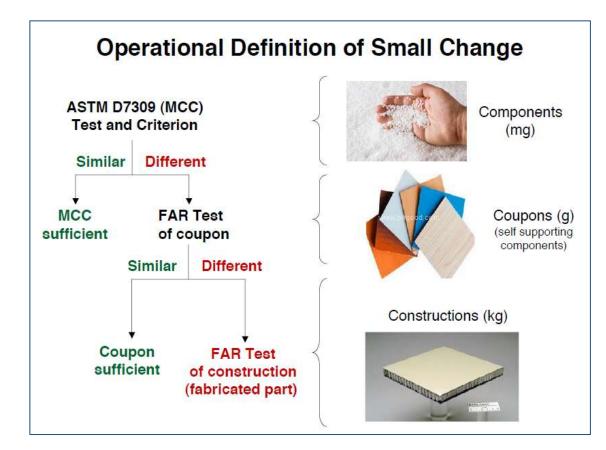

Richard E. Lyon, Ph.D. and Natallia Safronava, FAATC

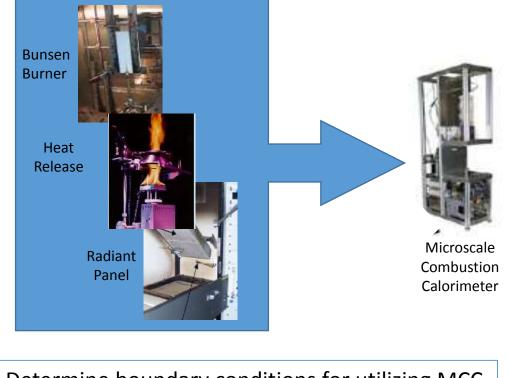
Thomas Little, Ph.D., Boeing

Task Group Goal:


- MCC is a molecular level material property and determines flammability properties.
- Develop test procedure and process to determine if a material change can be considered a "minor change" using Microscale Combustion Calorimetry (ASTM D7309).
- Proposed draft guidance developed was published in June 2016. <u>https://www.fire.tc.faa.gov/pdf/materials/MCC_Guidance_June_2016.pdf</u>

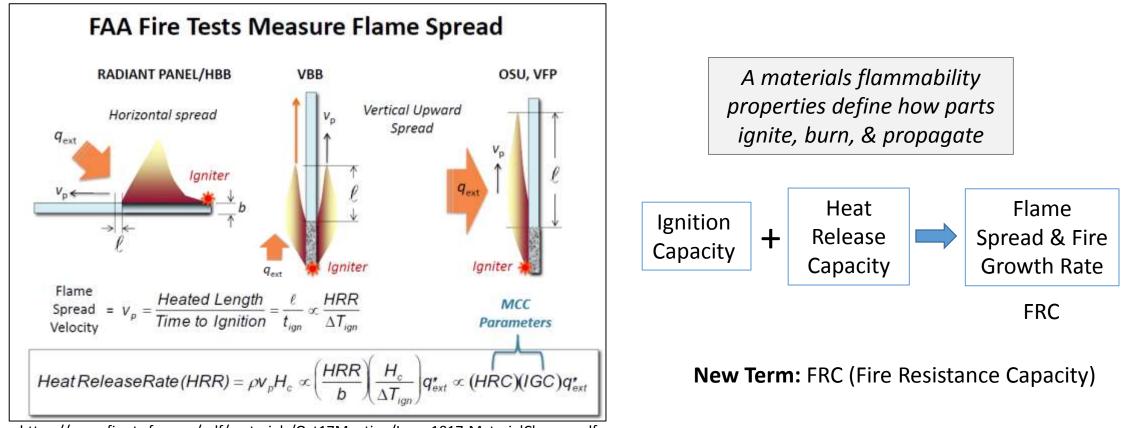
MCC Criteria Development Timeline:




MCC Similarity Comparison:

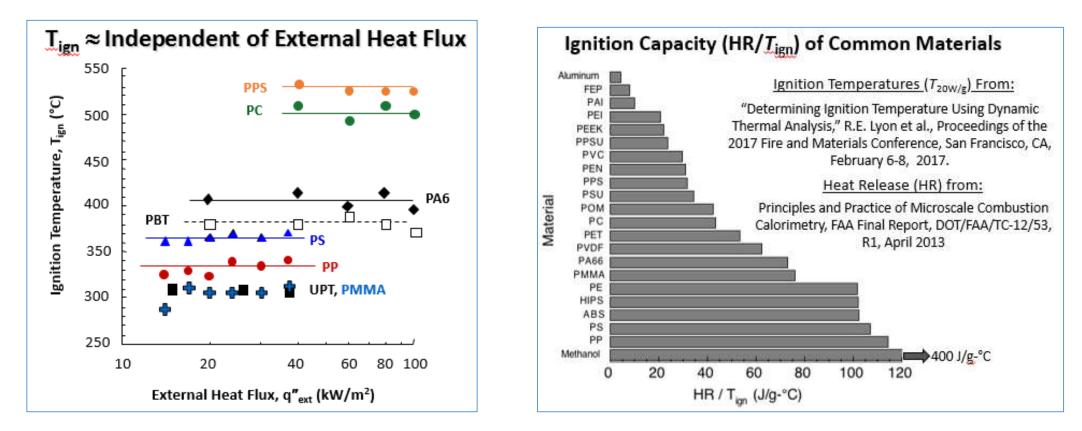
- Compare material changes to current certified materials
- Equivalent or better MCC performance confirms minor change

MCC Similarity Comparison:

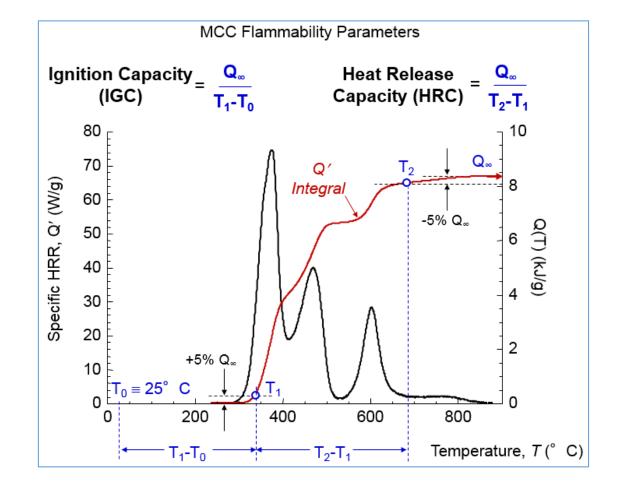


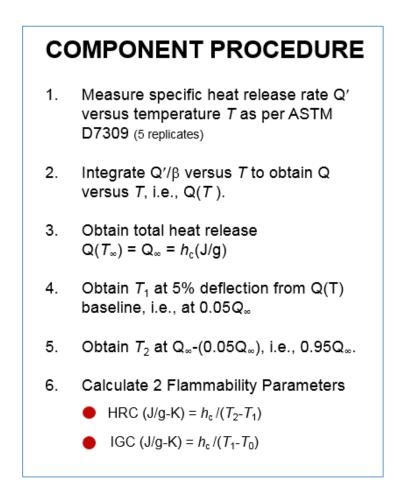
Determine boundary conditions for utilizing MCC

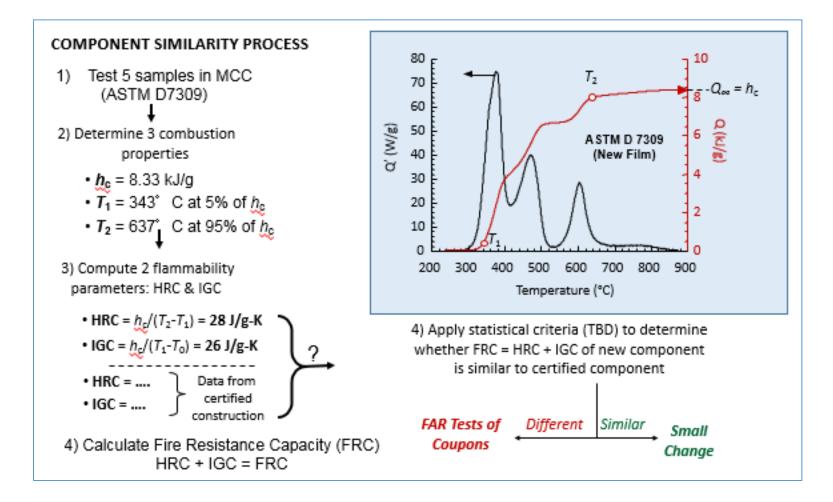
Test Criteria: Heat Release Capacity (HRC) and Ignition Capacity (IGC)


• Together, these two criteria define the overall combustion properties of materials which can lead to propagation.

https://www.fire.tc.faa.gov/pdf/materials/Oct17Meeting/Lyon-1017-MaterialChange.pdf


Test Criteria: Ignition Temperature of a material


• Independent of External Heat Flux and correlates with the thermal stability of polymers.


https://www.fire.tc.faa.gov/pdf/materials/March17Meeting/Boeing-0317-MCC_SIMILARITY.pdf

<u>Test Criteria</u>: MCC Component Procedure (Updated)

Test Criteria: MCC Similarity Comparison (Updated)

TASK GROUP BREAK-OUT TOPICS:

Guidance Document Updates:

- New definitions and updated reference material
- Calculation of MCC criteria
- Statistical analysis approach

Statistical Analysis Methodology: (Details provided in Appendix)

- Testing Methodology
- T-test

Case Studies:

- Primer & Topcoats
- Phenolic Resins
- Thermoplastics
- Adhesives

Next Steps:

- Material Change case studies (2Q 2018)
- Update Guidance as required (3Q 2018)
- Submit to FAA for new Advisor Circular or Policy Memo (4Q 2018)

Future Opportunities:

Future Opportunities:

- Leverage knowledge of <u>material</u> fire properties
 - Material based MOCs E.g. phenolic panels, thermoplastics
 - Standard material test configurations
- Utilize MCC in certification testing and future regulatory development
 - Incorporate MCC into current guidance/regulations
 - Full scale tests performance is controlled by material properties.
- Assessment of Fleet Performance Post-crash and in-flight fire scenarios
 - What can we learn about cabin fire safety performance relative to materials flammability?
 - What can we learn about the state-of-art material performance relative to the regulations?

Interior Materials & Requirements

	737-200 (Manchester) [Cert Basis 1967]		737-500 (Denver) [Cert Basis 1990]		State-of-Art [2005+]	
FEATURE	Materials	Test Method	Materials	Test Method	Materials	Test Method
Floor Panels	Fiberglass/epoxy/nomex (Lightweight)	Horiz BB, 12sec VBB	Fiberglass/epoxy/nomex (Lightweight & medium weight)	Cargo Liner Burnthrough	Carbon/epoxy/nomex	Cargo Liner Burnthrough
Sidewall Panels	Vinyl aluminum laminate	Horiz BB, 12sec VBB	Fiberglass/nomex honeycomb/phenolic with tedlar laminate	Heat Release	Fiberglass & carbon/nomex honeycomb/phenolic with tedlar laminate	Heat Release
Sidewall Panel Air Grills	Polycarbonate/aluminum screen	Horiz BB, 12sec VBB	High Temperature thermoplastic W/Tedlar foil laminate noise/airflow baffle	ноэт	High Temperature thermoplastic W/Tedlar foil laminate noise/airflow baffle	Heat Release
Stowbins	Fiberglass/epoxy/nomex with vinly/tedlar laminate	Horiz BB, 12sec VBB	Fiberglass/carbon/nomex honeycomb/phenolic with tedlar laminate	Heat Release	Fiberglass/carbon/nomex honeycomb/phenolic with tedlar laminate	Heat Release
Ceilings	Epoxy/polyester compression molded fiberglass & vinyl aluminum laminate	Horiz BB, 12sec VBB	Fiberglass/carbon/nomex honeycomb/phenolic with tedlar laminate	Heat Release	Fiberglass/carbon/nomex honeycomb/phenolic with tedlar laminate	Heat Release
Cargo Liners	Fiberglass/epoxy/polyester sheet	Horiz BB, 12sec VBB	Fiberglass/phenolic sheet	Cargo liner oil burner	Fiberglass/phenolic sheet	Cargo liner oil burner
Seat Cushions	Non-fire blocked polyurethane foam	Horiz BB, 12sec VBB	Fire-blocked polyurethane foam	Seat Oil Burner	Fire-blocked polyurethane foam	Seat Oil Burner
Fuselage Insulation	PET Film/Fiberglass Batting	Horiz BB, 12sec VBB	PET Film/Fiberglass Batting & fire stop below window		PEEK/PVF/PEEK Film/Fiberglass Batting & fire stop below window	Radiant Panel

Material Flammability Performance During Post-crash Fire

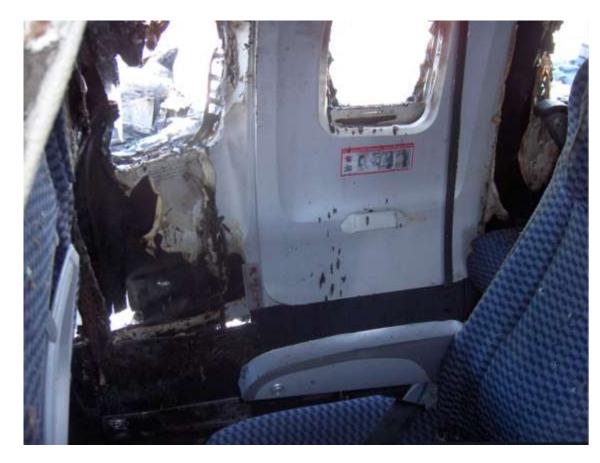
1985: 737-200, Manchester (AAIB Aircraft Accident Report, August 1988)

External Fire Damage: Left side aft of wing

Interior Fire Damage: Passenger Aisle looking forward

Material Flammability Performance During Post-crash Fire 2008: 737-500, Denver

AAR-10-04; 737-500 Accident Report; Continental Flight 1404, Denver, CO on December 20, 2008 https://www.ntsb.gov/investigations/AccidentReports/Pages/AAR1004.aspx


Material Flammability Performance During Post-crash Fire

2008: 737-500, Denver

Material Flammability Performance During Post-crash Fire

2008: 737-500, Denver

Material Flammability Performance During Post-crash Fire 2016: 767-300, Chicago

NTSB Airworthiness Group Chairman's Factual Report, American Airlines Flight 383, 767-300, Chicago, IL on October 28, 2016 https://dms.ntsb.gov/pubdms/search/hitlist.cfm?docketID=60058&CFID=1162339&CFTOKEN=3b2ad8e5a9b13897-F1C836F4-F78C-90A7-555B28897F98613

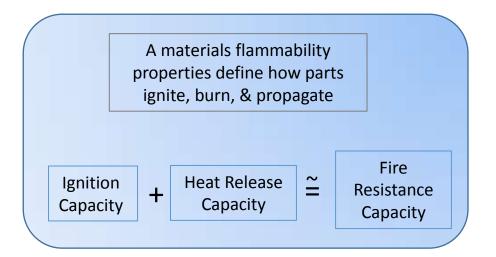
Material Flammability Performance During Post-crash Fire 2016: 767-300, Chicago

Figure 57 Seat 34 charred seat cushion

NTSB Airworthiness Group Chairman's Factual Report, American Airlines Flight 383, 767-300, Chicago, IL on October 28, 2016 https://dms.ntsb.gov/pubdms/search/hitlist.cfm?docketID=60058&CFID=1162339&CFTOKEN=3b2ad8e5a9b13897-F1C836F4-F78C-90A7-555B28897F98613

Summary - Future Opportunities:

• Continue to leverage knowledge of <u>materials</u> fire properties,


incorporate MCC into guidance/regulation

• Include MCC in testing and regulation

development activities

• Assessment of current system of

flammability requirements – move toward materials based certification

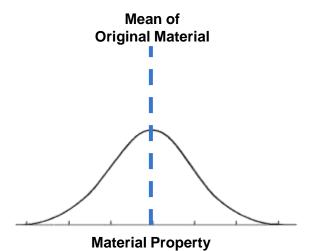
Thank You!

Note: The following slides provide a summary of the Statistical Analysis approach for use with the Material Change Similarity process.

Statistical Methodology for Material Change Similarity using MCC

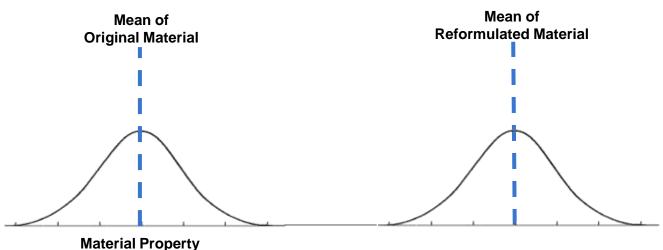
International Aircraft Materials Fire Test Working Group Material Change Similarity Task Group Savannah, GA 06-07 March 2018

> Thomas W. Little, Ph.D. Boeing Commercial Airplanes

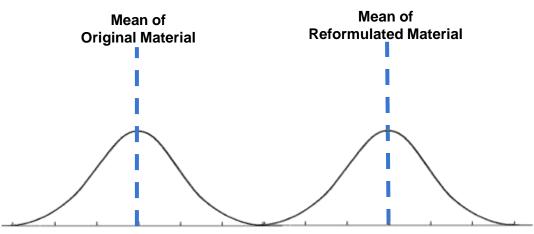

<u>Acknowledgements</u> FAA Tech Center: Richard E. Lyon, Ph.D., Natallia Safronava Boeing: Dan Slaton

Copyoightigh 20120B 7 eBroge i Add. rAdhtisg hes eeseed ved

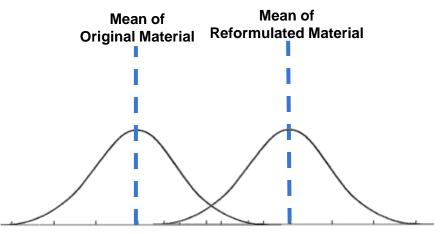
- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance

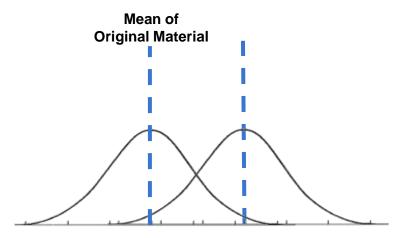

Background

- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance

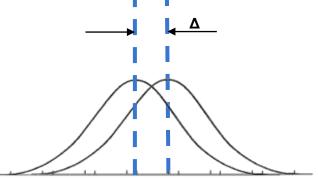


Materials Change Similarity, T. Little March 2018 | 23


- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance

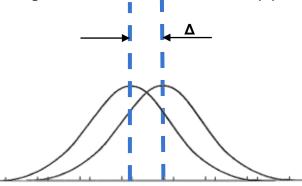

- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance

- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance


- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance

Background

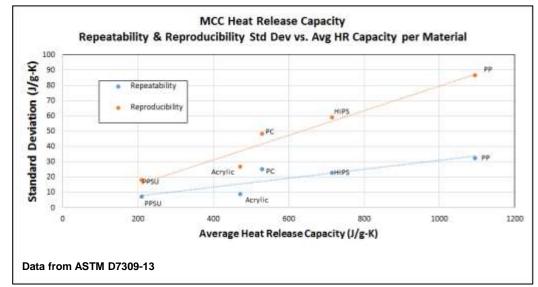
- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance


Difference in Means of Original and Reformulated Material (Δ)

Background

- Material Change Similarity Task Group is developing a process to quantitatively determine the impact of material composition changes on flammability properties
- Fundamental process
 - Measure fundamental material flammability properties using Microscale Combustion Calorimetry (MCC)
 - Examples: Heat release capacity (HRC), flame spread capacity (FSC), total heat release (THR),
 - Statistically compare properties of the "new" and "old" materials -> "after compositional change" vs. "before compositional change" ("original material" vs. "reformulated material")
 - If results are not significantly different, consider the new and old materials interchangeable from perspective of flammability performance

Difference in Means of Original and Reformulated Material (Δ)


Problem Statement

Need suitable statistical data analysis procedures and evaluation criteria to determine when "old" and "new" materials may be considered interchangeable, i.e.

-> "How small does Δ need to be for interchangeability?"

• ASTM MCC Statistical Methodology?

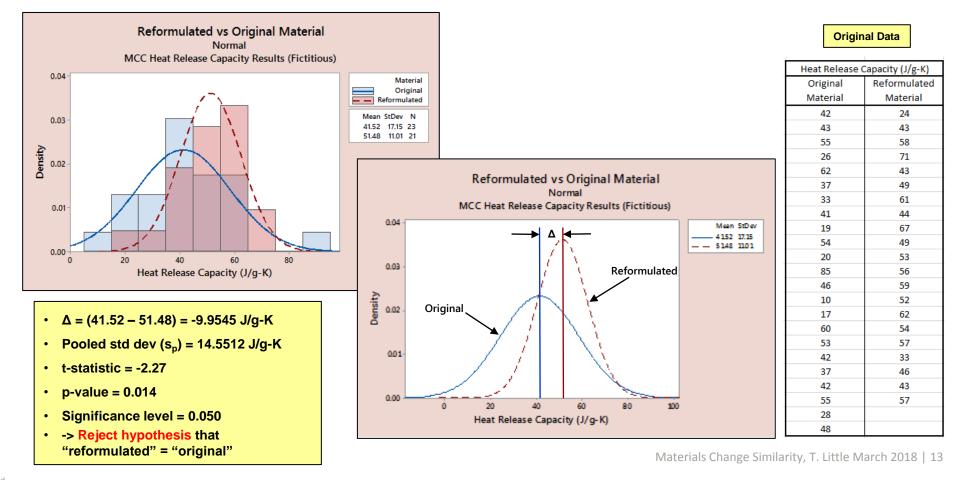
- ASTM D7309 "Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry" (Section 14)
- References
 - ASTM E177 "Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods"
 - ASTM E691 "Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method"
- Key Points
 - Objective: Determine MCC precision statistics: repeatability (r) & reproducibility (R) limits
 - Calculated from "Interlaboratory Study," aka "round-robin" (RR) (2010-2011)
 - Based on "repeatability standard deviation" (s_r) and "reproducibility standard deviation" (s_R)
 - Calculated from all labs in the RR
 - s_r and s_R are a f(measurement value)
 - s_r and s_R ≠ "typical" (within-laboratory) standard deviation
 - s_r and s_R do not cover entire range or latest MCC parameters (e.g. FSC)
- **Conclusion**: ASTM D7309 statistical methodology not optimal for material change comparisons

Proposed Statistical Methodology

- Traditional "null hypothesis significance testing"
 - Widely used for comparison of 2 (or more) data sets
 - "Null hypothesis": the means for the material property for the original and reformulated material are identical
 - "Significance testing": collection & analysis of data -> assessed against the null hypothesis at a given level of statistical "significance"
 - If there is sufficient statistical evidence, the null hypothesis is rejected; and the 2 materials are not considered interchangeable in terms of flammability properties.
- Fundamental procedure
 - Collect MCC data (HRC, FSC, ...) for original & reformulated materials simultaneously (head-to-head comparison)
 - Notation: Let original material = "material 1" and reformulated material = "material 2"
 - Number of specimens = n_1 and n_2 (ideally, $n_1 = n_2$)
 - Calculate means and standard deviations for both materials $(\langle x \rangle_1, s_1; \langle x \rangle_2, s_2)$ and "pooled standard deviation" s_p

•
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

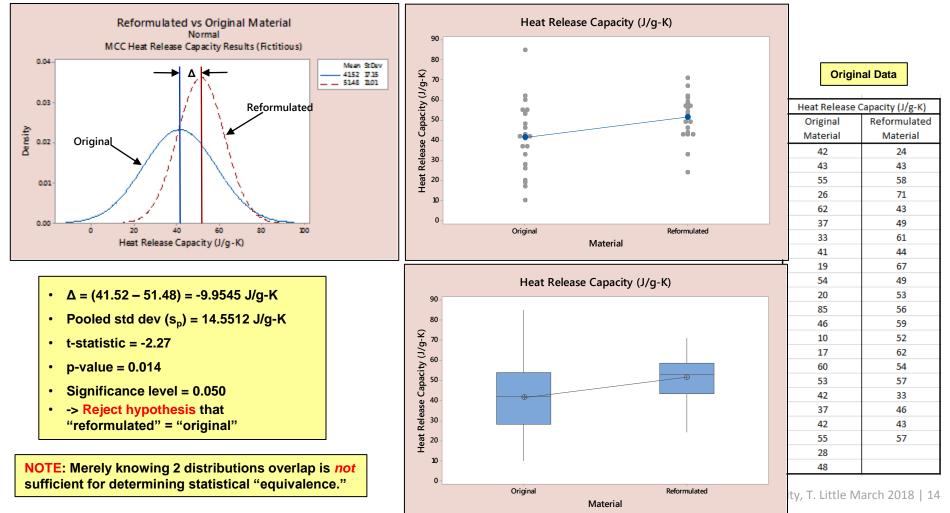
Proposed Statistical Methodology


- Fundamental procedure (continued)
 - Calculate the test statistic
 - Assumption: Comparing only 2 data sets ("original" vs. "reformulated") -> Use "t-test" -> test statistic = "t"

•
$$t = \frac{\langle x \rangle_1 - \langle x \rangle_2}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

- Determine the corresponding "p-value" and compare to the "significance level," often 0.05 (i.e. 5%).
 - p-value: probability, assuming the null hypothesis is true, the t statistic will be at least as extreme as the calculated value
- If p-value < "significance level," reject the null hypothesis -> original material and reformulated material are not interchangeable.

Proposed Statistical Methodology--EXAMPLE


- Example: *Fictitious* Heat Release Capacity (HRC) results from "original" and "reformulated" material
- Intended to demonstrate statistical procedure only....not intended to be representative of any true material HRC

Copyright © 2017 Boeing. All rights reserved.

Material Change Similarity Proposed Statistical Methodology--EXAMPLE

- Example: *Fictitious* Heat Release Capacity (HRC) results from "original" and "reformulated" material

Proposed Statistical Methodology

- Additional Information and Considerations -> "The devil is in the details."
 - Test Procedures
 - Must have sufficient number of test samples
 - Samples should be tested in a randomized order -> do not sequentially test all Mat'l 1, then all Mat'l 2
 - Analysis
 - Assumes measurement results are normally distributed (i.e. follow a Gaussian distribution)
 - Assumes mat'l 1 & 2 std dev values sufficiently close to warrant use of "pooled standard deviation" for t-test
 - Based on 1-sided t-test -> actually testing for "reformulated mat'l not statistically worse than original mat'l"
 - In English....
 - If population mean of Mat'l 2 ≤ Mat'l 1 -> materials are "interchangeable"
 - If population mean of Mat'l 2 > Mat'l 1 -> materials are not "interchangeable"
 - In language of statistics....
 - Null hypothesis: $\mu_1 = \mu_2 \text{ or } \mu_1 \mu_2 = 0$
 - Alternative hypothesis: $\mu_1 \mu_2 < 0$
 - Provisionally assume significance level = 5% -> may want to change value in the future

Backup

Material Change Similarity Proposed Statistical Methodology

- Example: *Fictitious* Heat Release Capacity (HRC) results from "original" and "reformulated" material
- Original Mat'l Reformulated Mat'l Normal Normal **Original Data** Mean 4152 5148 Mean StDev 17.15 StDev 11.01 23 N 25 21 Heat Release Capacity (J/g-K) AD 0.257 AD 0.289 20 20 Reformulated P-Value 0.690 P-Value 0.580 Original 80 Material Material 42 **O**X 60 50 50 43 40 55 20 20 20 26 62 37 33 90 41 20 30 40 50 60 70 80 Heat Release Capacity (J/g-K) Heat Release Capacity (J/g-K) 19 54 Check of equal variance (to validate use of "pooled standard deviation") _ 20 85 Test and CI for Two Variances: Heat Release Capacity (J/g-K) vs Material Test and CI for Two Variances: Heat Release Capacity (J/g-K) vs Material 46 Ratio = 1vs Ratio ≠ 1 Ratio = 1vs Ratio ≠ 1 10 95% CI for d(Original) / d(Reformulated) 95% C for a(Original) / a(Reformulated) 17 bover/k Text F-Text Sec.4 P-Value 0.099 P-Value 0.051 60 Levere's Test Louise P-Value 0.592 53 2.76 2.00 2.28 2.0 2.0 42 NO 95% C for StDevs 95% Chi-square Cls for StDevs 37 Origina Original 42 2 Adverse 55 28 Boxplot of Heat Release Capacity (J/g-K) vs Material Boxplot of Heat Release Capacity (J/g-K) vs Material 48

2 Adversaria

Check of normality (Gaussian distribution)

hange Similarity, T. Little March 2018 | 17

24

43

58

71

43

49

61

44

67

49

53

56

59

52

62

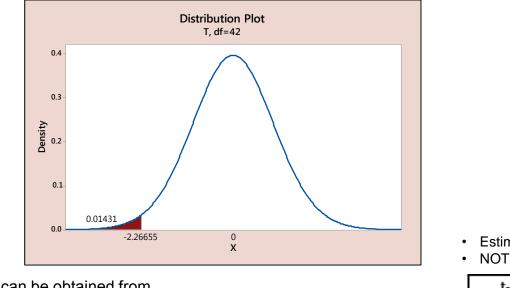
54

57

33

46

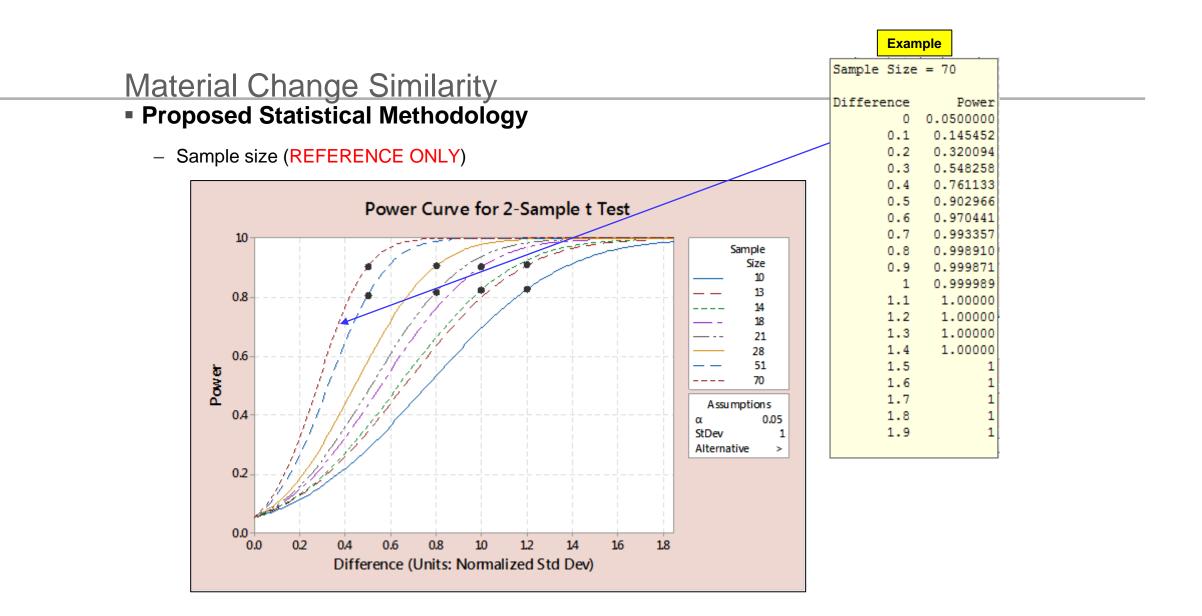
43


57

Copyright © 2017 Boeing. All rights reserved.

2 Adverse

Material Change Similarity Proposed Statistical Methodology


- Example: *Fictitious* Heat Release Capacity (HRC) results from "original" and "reformulated" material
- T-statistic and p-value
 - t-statistic: -2.26655 -> p-value: 0.01431

- P-values can be obtained from...
 - Statistical software packages (Minitab, JMP, SAS, R...)
 - Excel (TDIST, T.DIST.RT functions)
 - Online conversion web sites
 - Some calculators (ex. TI-83 graphing calculator)
 - Estimation/interpolation of t-tables

- Estimate p-value from interpolation
- NOTE: Degrees of freedom = $(n_1 + n_2 2)$

	t-distribution critical values						
		95% conf	98% conf				
	Deg of freedom	p = 0.025	p = 0.010				
	40	2.021	2.423				
~	42	2.018	2.418				
	50	2.009	2.403				

