

Engineering, Test & Technology Boeing Research & Technology

HR 2 Response Parameters Ranges and Sonic Choke Evaluation

Presented by: Yaw Agyei

Contributors: HR 2 Development Team, Boeing Teams March 2020

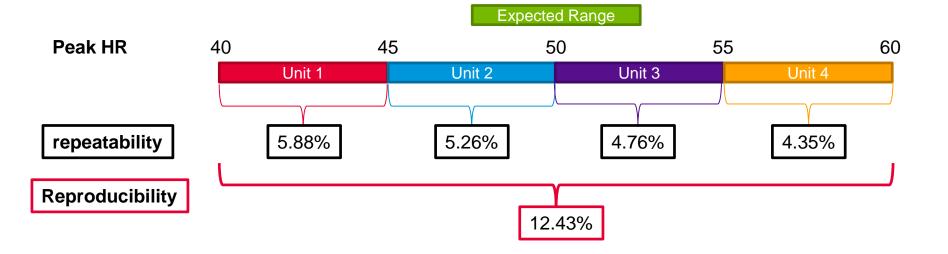
Copyright © 2016 Boeing. All rights reserved.

Support and Contributions

- HR 2 Development Team
 - Mike Burns FAA Tech Center
 - Christian Thomas Airbus
 - Martin Spencer MarlinEngineering
 - Brian Johnson Boeing
 - Yaw Agyei Boeing
- Boeing Flammability Team
 - Yaw Agyei
 - Matt Anglin
 - Yonas Behboud
 - Colleen Chlastawa
 - Keith Couilliard
 - Brian Johnson
 - Josh Rawlins
 - Brandon Rust
 - Theo Spanos
 - Ken Young
- Boeing Applied Math
 - Lindsay Jones, PhD
 - Katy Wrenn

Contents

- 1. HR 2 Response Parameters Ranges
 - a) Purpose / Experiment design
 - b) Statistical analysis to set preliminary response ranges
 - c) HR 2 test method repeatability capability
- 2. Sonic Choke Performance Evaluation
 - a) Purpose / Experiment design
 - b) Statistical analysis to evaluate choke performance
- 3. Conclusions / Next Steps


HR 2 Development Goal Improving Reproducibility

HR 2 Goal

- Define a robust test method to determine peak and total heat release that improves repeatability and reproducibility when compared with OSU.
 - Measured by CoV = (Stdev/Mean)*100

Gold Standard Expected Range 47.5 – 52.5, Avg 50 5.00% Reproducibility

Gold Standard Theoretical Example

HR 2 Goal – Improving Reproducibility HR 2 Key Characteristics – Nominal Operating Parameter Ranges

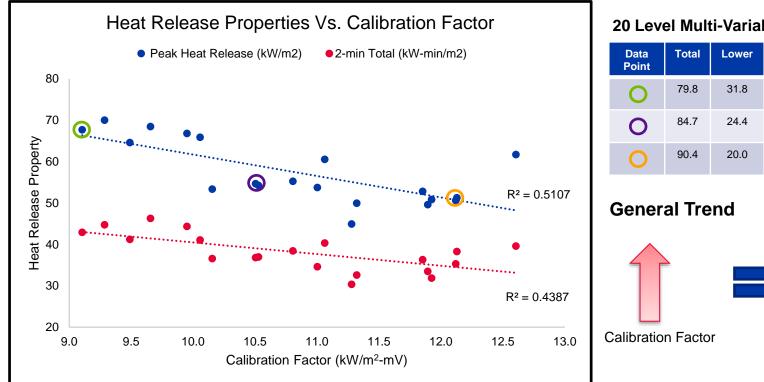
PARAMETER	DESCRIPTION	MIN	NOMINAL	MAX	
Inlet Airflow Rate	SCFM	19.6	20	20.4	
Inlet Air Temperature	°C	21.1	22.5	23.9]
Inlet Air Relative Humidity	% RH	-	-	≤ 6 5]
Heat Flux (W/cm ²)	Center	3.60	3.65	3.70	
	Each Corner (4)	3.55	3.65	3.75	_
Average Baseline Exhaust Gas Temperature	No Flame (°C)	270	280	290	
	Slope (L/°C)	0.0255	0.0289	0.0323	
Calibertian Faster Barrer	W/°C	15.00	17.00	19.00	
Calibration Factor Range	kW/m ² /°C	0.646	0.732	0.818	15 · 17 W
	3 SLPM ΔT (°C)	92.8	103.7	117.6	
Interspace Pressure	inH2O	0.40	0.55	0.70	Те
Lower Plenum Pressure	inH2O	11.0	12.5	14.0	Repeata
Methane Gas Supply Pressure	PSIG	18	20	22	E
Main Air Supply Pressure	PSIG	18	20	22	
Mixing Air Supply Pressure	PSIG	18	20	22	1
Thermal Stability Temperature (TST)	20 sec average (°C)	365	380	395	
Specimen Conditioning	Temperature (°C)	18	21	24	
	Relative Humidity (%)	45	55	65	
Upper Pilot Gas Flow	Air (SLPM)	0.98	1.00	1.02	
	Methane (SLPM)	1.47	1.50	1.53	All b
Louise Bilet Cos Flow	Air (mL/min)	0.65	0.70	0.75	obse
Lower Pilot Gas Flow	Methane (mL/min)	115	120	125	

Response Parameters

270 – 290 °C			
280 °C ± 3.6%			

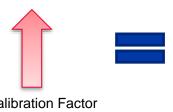
15 – 19 W / °C **17 W / °C ± 11.76%**

Test Method Repeatability Capability Estimate


> 365 – 395 °C **380 °C ± 3.9%**

All based on observations

HR 2 Goal – Improving Reproducibility Importance of Calibration Factor


Calibration Factor (Boeing OSU Study)

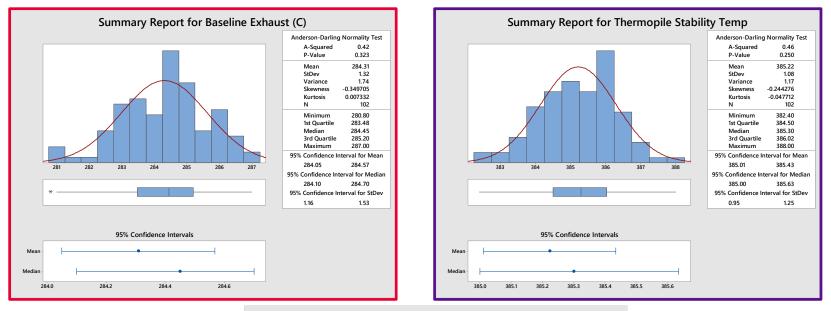
- Most critical response, perfect state response
- Measured variation = inherent common cause variation
- Estimate HR 2 repeatability, reproducibility capability

20 Level Multi-Variable interaction study

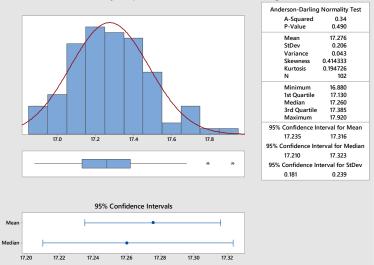
Data Point	Total	Lower	Cooling	Split Ratio	Heat Flux
0	79.8	31.8	48.1	1.51	3.52
0	84.7	24.4	60.3	2.47	3.49
0	90.4	20.0	70.4	3.5	3.53

HR 2 Response Parameter Ranges Calibration Factor Experiment

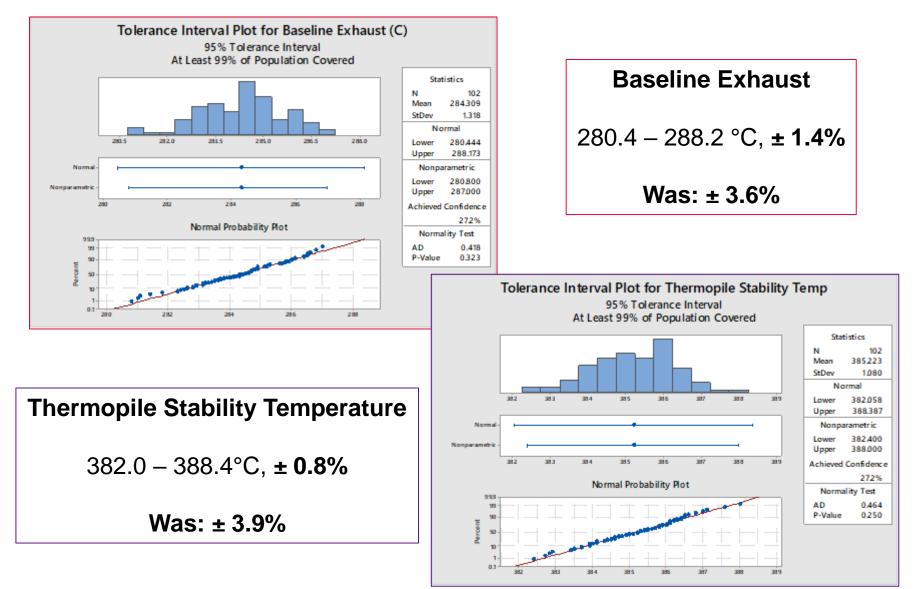
Objective

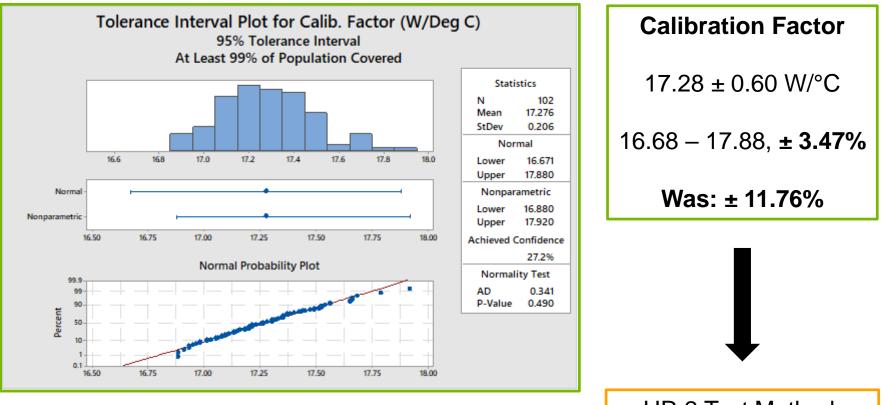

- 1. Conduct 100 methane gas calibrations on HR 2 prototype
- 2. Measure and record input and response parameters
- 3. Analyze data, calculate tolerance interval for response factors
 - 99-95% tolerance interval 95% confidence that interval covers 99% of sample population

Goal


- 1. Set required response parameter ranges (control limits)
- 2. Estimate test method capability based on calibration factor range

Experiment conducted by Mike Burns – FAA Tech Center Analysis by Boeing


HR 2 Response Parameter Ranges Calibration Factor Experiment – Graphical Summary


Summary Report for Calib. Factor (W/Deg C)

HR 2 Response Parameter Ranges 99-95% Tolerance Intervals

HR 2 Response Parameter Ranges 99-95% Calibration Factor Tolerance Interval

HR 2 Test Method Repeatability Capability

± 3.47%

Sonic Choke Evaluation Purpose

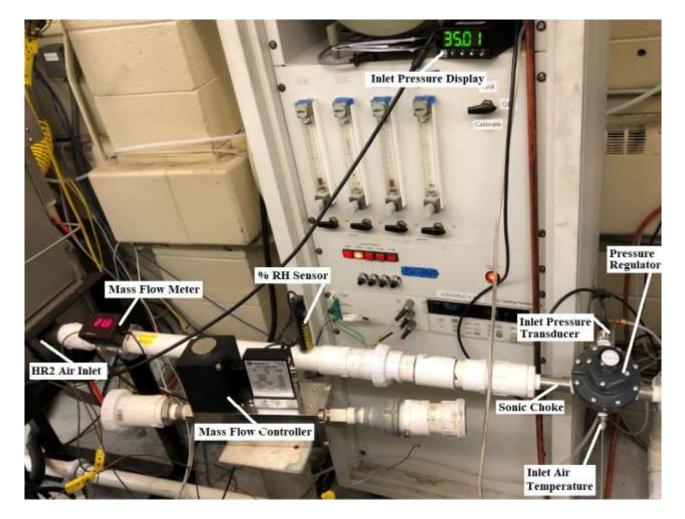
Background

- Fall 2019 meeting Mike Burns introduced sonic choke as a possible alternative to Mass Flow Controllers to distribute HR 2 air.
 - Passive component that controls air to the chamber
 - Lower initial cost \$950
 - Lower maintenance cost
 - MFC also operating at high end of range
- Heat Release task group agreed to possible change if sonic choke is shown to be accurate and precise
- Mike and HR 2 Development Team tasked with gathering evidence to evaluate performance

Sonic Choke Evaluation Experiment Design

Experiment Goal

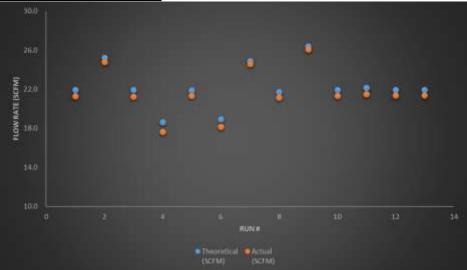
- 1. Gather evidence to assess sonic choke performance
- 2. Replace mass flow controller with sonic choke if performance criteria is met
 - Performance criteria: Sonic choke able to achieve flow rates comparable to theoretically calculated flows (Christian Thomas - Airbus)

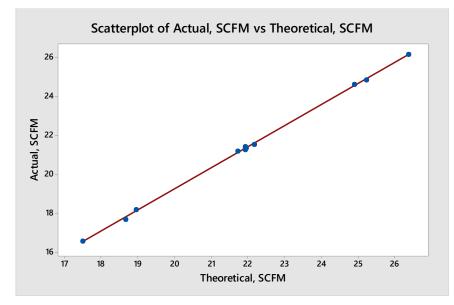

Experiment Objectives

- 1. Design and conduct an experiment that varies air temperature, inlet pressure through sonic choke, measured via mass flow meter downstream of choke.
- 2. Conduct statistical analysis to compare theoretical flow rates with actual flow rates
- Control Factors
 - Temperature: 65 80 F
 - Inlet Pressure: 30 40 PSIA
- Response Factors
 - Flow rates, SCFM

Experiment conducted by Mike Burns – FAA Tech Center

Analysis by Boeing


Sonic Choke Evaluation Experiment Set-Up


Mike Burns set-up at FAA Tech Center

Sonic Choke Evaluation Analysis

	Control Factor (Actual)		Response Factor			
Run	Air	Inlet	Theoretical	Actual	Response	%
Order 🔻	Temperature (F) 🔽	Pressure (PSIA) 💌	(SCFM)	(SCFM) 🔽	Differenc 🔻	Differenc 🔻
1	72.2	35.0	21.94	21.30	0.64	3.0%
2	65.6	40.0	25.23	24.81	0.42	1.7%
3	73.1	35.0	21.92	21.25	0.66	3.1%
4	80.4	30.0	18.66	17.64	1.01	5.7%
5	73.4	35.0	21.91	21.33	0.58	2.7%
6	64.4	30.0	18.94	18.16	0.78	4.3%
7	79.6	40.0	24.90	24.59	0.31	1.2%
8	83.2	35.0	21.71	21.17	0.54	2.6%
9	72.5	42.1	26.38	26.11	0.27	1.0%
10	72.5	35.0	21.93	21.32	0.61	2.9%
11	61.7	35.0	22.16	21.52	0.63	2.9%
12	73.2	35.0	21.92	21.37	0.55	2.6%
13	72.9	35.0	21.92	21.39	0.53	2.5%
14	72.9	27.9	17.47	16.55	0.92	5.6%
					0.58	2.8%

Sonic Choke Evaluation Analysis

35 34 34 33 33 33

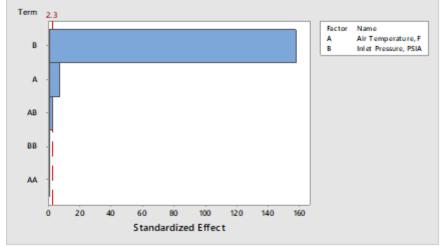
Temp and Pressure combinations for desired Air Flow Rate

Pareto Chart of the Standardized Effects

75

80

(response is Actual, SCFM, $\alpha = 0.05$)


32

31

65

70

Air Temperature, F

Regression Equation

Actual, SCFM = -2.343 + 1.07930 Theoretical, SCFM

Model Summary

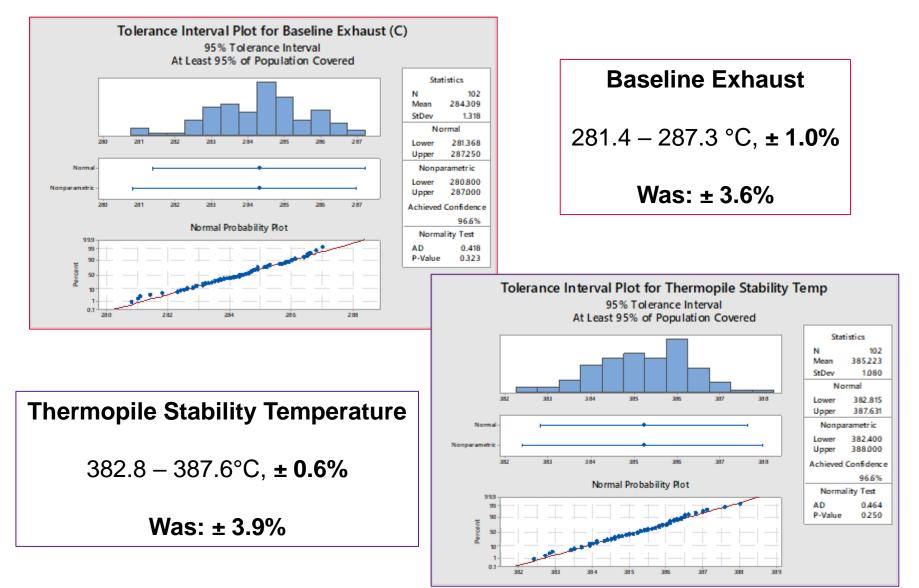
S	R-sq	R-sq(adj)	R-sq(pred)
0.0702324	99.94%	99.93%	99.91%

Conclusion / Next Steps

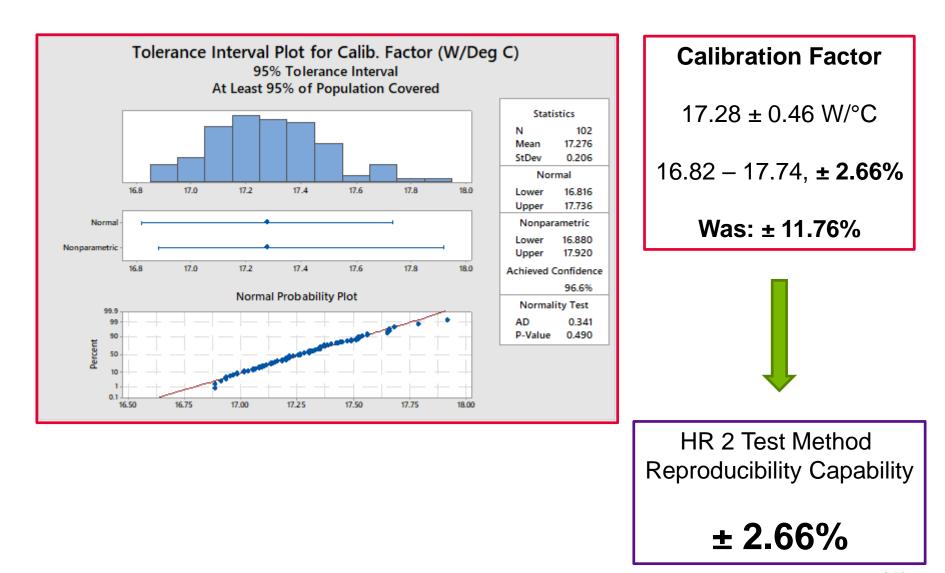
HR 2 Response Parameter Ranges

- Prototype unit repeatability capability estimated at ± 3.47%
- Opportunity to significantly reduce acceptable response parameter ranges → contributes to better test method reproducibility
- Response parameter ranges, reproducibility capability will be determined using TRL 6 Phase 1 unit assessment data
 - 4 units at this time (FAA 2 units, Airbus, Boeing)

Sonic Choke Performance Evaluation


- Actual measurements comparable to theoretical
- Air flow rates heavily affected by pressure, little influence from temperature
- Task group discussion on potentially replacing MFC with Sonic Choke
 - Considering performance, capability, cost

Questions / Thoughts?


What goes around the world but stays in a corner?

A. Postage stamp

HR 2 Response Parameter Ranges 95-95% Tolerance Intervals

HR 2 Response Parameter Ranges 95-95% Calibration Factor Tolerance Interval

