Vertical Flame Propagation (VFP)

Presented to: International Aircraft Material Fire Test Forum Mobile, AL

By: Tina Emami and Rick Whedbee

Date: March 10-11, 2020

Federal Aviation Administration

Vertical Flame Propagation (VFP)

Objective

- Proposed new test method for non-metallic, extensively used materials located in <u>inaccessible areas</u>, i.e.:
- Composite skin, structure, and sub-components
- Wires
- Duct materials
- Other, tbd

What is it?

 A way of evaluating the performance of a material against a realistic fire threat using a line burner and radiant heat source.

Topics

Where were we? Where are we? Are we there yet?

Federal Aviation Administration

Where were we?

Varying diameters of ducts and their results
 Flat vs round

Varying thicknesses

Wire background

Heater uniformity

Different manufacturers = varying heat output per watt Supply voltage

Heat flux

Could HFG's resolve design and power differences

Where are we?

Interlab study of HFG's

- 4 labs, 5 gauges
- Set power to host gauge (reference)
- Compared all other gauges (working)

• Goals

- Determine the variability among HFG's
- Use this deviation to evaluate HFG reliability

HFG Comparisons	$\Delta w/cm^2$	$max \Delta w/cm^2$
VFP Lab vs Burns Cal	-0.11	0.11
Lab A vs Burns Cal	-0.1	
Lab B vs Burns Cal		
Lab C vs Burns Cal		

- St dev: 0.061
- % st dev: 2.57
- Set to power, not to heat flux. That update had not yet been installed to unit*

HFG Comparisons	Δ w/cm ²	$max \Delta w/cm^2$
VFP Lab vs Burns Cal	-0.04	
Lab A vs Burns Cal	-0.02	
Lab B vs Burns Cal	-0.14	0.14
Lab C vs Burns Cal		

- St dev: 0.057
- % st dev: 2.937

HFG Comparisons	$\Delta w/cm^2$	$max \Delta w/cm^2$
VFP Lab vs Burns Cal	-0.04	
Lab A vs Burns Cal	-0.02	
Lab B vs Burns Cal	-0.09	-0.09
Lab C vs Burns Cal		

- St dev: 0.039
- % st dev: 1.98

HFG Comparisons	$\Delta w/cm^2$	$max \Delta w/cm^2$
VFP Lab vs Burns Cal	-0.03	
Lab A vs Burns Cal	-0.05	
Lab B vs Burns Cal	-0.11	0.11
Lab C vs Burns Cal	-0.01	

- St dev: 0.044
- % st dev: 2.463

HFG Comparisons	$\Delta w/cm^2$	$max \Delta w/cm^2$
VFP Lab vs Burns Cal	0.1	
Lab A vs Burns Cal	-0.034	
Lab B vs Burns Cal	-0.17	0.17
Lab C vs Burns Cal		

- St dev: 0.112
- % st dev: 2.566

Conclusions

- 1. Did we determine the variability of HFG's?
 - Most gauges varied 0.03-0.1 w/cm²
 - One gauge varied .11-.17 w/cm²
- 2. Will HFG be reliable going forward?
 - Determine effect on burn length of these variances
 - Visit HFG manufacturer to discuss calibrations

Baseline Material Assessment

Avg Burn Length	Std Dev.	% Std Dev.
2.28"	0.23"	10.12

- Series of tests conducted on an aircraft grade CFRP, 1/8" thick
- 10 tests
- Strict 1.8 watts/cm²
- Room temp 71°F

Experiment Set up

Factor	(-) Low Level	(+) High Level									
Heat Flux (Watts/cm2)	1.7	1.9									
Room Temp (F)	65	75									
Experiment											
Standard Order	Heat Flux	Room Temp	Randomize	Actual Heat Flux	Burn Length	After Flame	Room Temp	% RH	Back Wall Thermocouple Pre Test	Watts Before Test	Watts After Test
3	1.7	75	0.010730819								
9	1.7	65	0.161017441								
8	1.9	65	0.244162765								
11	1.7	75	0.363605551								
6	1.9	75	0.533051687								
4	1.9	65	0.545988063								
5	1.7	65	0.659694949								
1	1.7	65	0.663592607								
12	1.9	65	0.734122903								
10	1.9	75	0.804076379								
2	1.9	75	0.812019225								
7	1.7	75	0.866090654								

Effect on Burn Length

Experiment #1: Heat Flux (+0.2), Chamber Temp

Variable	Low	High	Avg. Effect on BL
Heat Flux (w/cm ²)	1.6	2.0	0.96"
Chamber Temp (°C)	50	70	0.07"

Baseline St Dev	
0.23"	

Effect on Burn Length

Experiment #2: Heat Flux (+0.1), Room Temp

Variable	Low	High	Avg. Effect on BL
Heat Flux (w/cm2)	1.7	1.9	0.32"
Room Temp (^o C)	18.3	23.9	0.42"

Effect on Burn Length

Experiment #3: Heat Flux (+0.05), Room Temp

Variable	Low	High	Avg. Effect on BL
Heat Flux (w/cm2)	1.75	1.85	0.04"
Room Temp (^o C)	19.4	22.8	0.002"

Conclusion

- Relationship between heat flux variation and the effect on burnlength
- 3 ranges shown
- Max heat flux variation < stdv
 of this material

Are we there yet?

Not. Quite. Yet.

- The task group will discuss and agree on a heat flux tolerance
- Visit HFG manufacturers to discuss calibrations
- Start Interlab Composite Testing
- Simultaneously continue ducting materials & wires

raa 1

Contact Info

Tina Emami Fire Safety Branch Bldg275, ANG-E212 William J. Hughes Technical Center Atlantic City, NJ 08405 (609) 485-4277 Tina.Emami@faa.gov

Rick Whedbee

Fire Safety Branch Bldg275, ANG-E212 William J. Hughes Technical Center Atlantic City, NJ 08405 (609) 485-4610 Rick.Whedbee@faa.gov

Federal Aviation Administration