Development of an Improved Fire Test Method and Criteria for Aircraft Electrical Wiring

PROJECT STATUS

Presented to: International Aircraft Materials Fire Test Working Group

By: John Reinhardt, Project Manager, PMP Date: October 21, 2008 Location: Atlantic City, NJ

Federal Aviation Administration

Outline

AGENDA

- Project Charter
- Scope Statement
- Work Breakdown Structure
 - Material Testing
 - Evaluate Test Methods
 - Select/Modify Evaluated Test Method
- Final Words

Initiating Process

PROJECT CHARTER

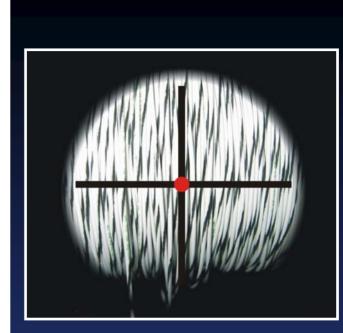
<u>Objectives</u>:

✓ Develop a fire test method for aircraft electrical wiring that could adequately discriminate between poorly performing wire insulation materials and fire worthy ones when exposed to a realistic fire scenario.

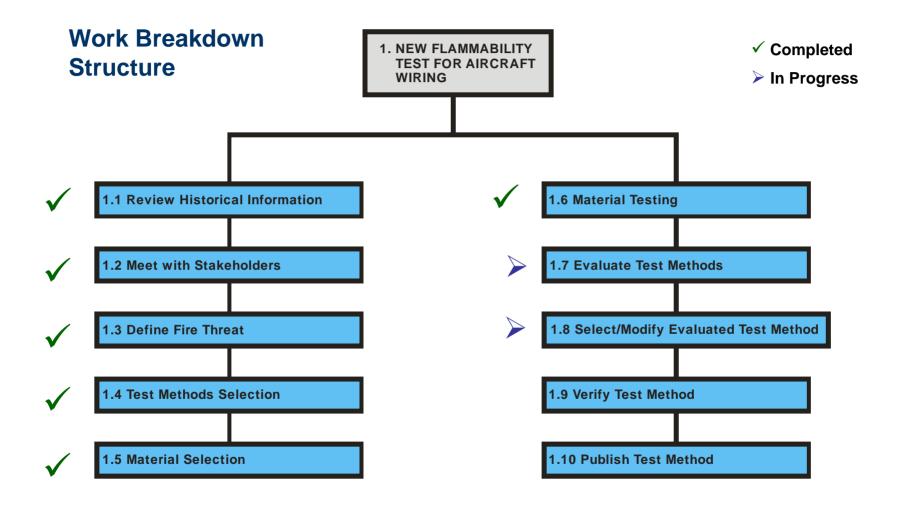
<u>Requirements</u>:

✓ Submit a final report documenting the developmental project and the new test method.

- <u>Due Date</u> (milestone):
 - ✓ 30 June 2009: Draft Final Report



Initiating Process


SCOPE STATEMENT

- This project will focus on the flammability characteristics of aircraft wiring insulation only.
- It will consider the Radiant Heat Panel test apparatus as a candidate replacement.
- Excluded: wire arcing, design issues, installation issues, maintenance issues, FAA policies, etc.

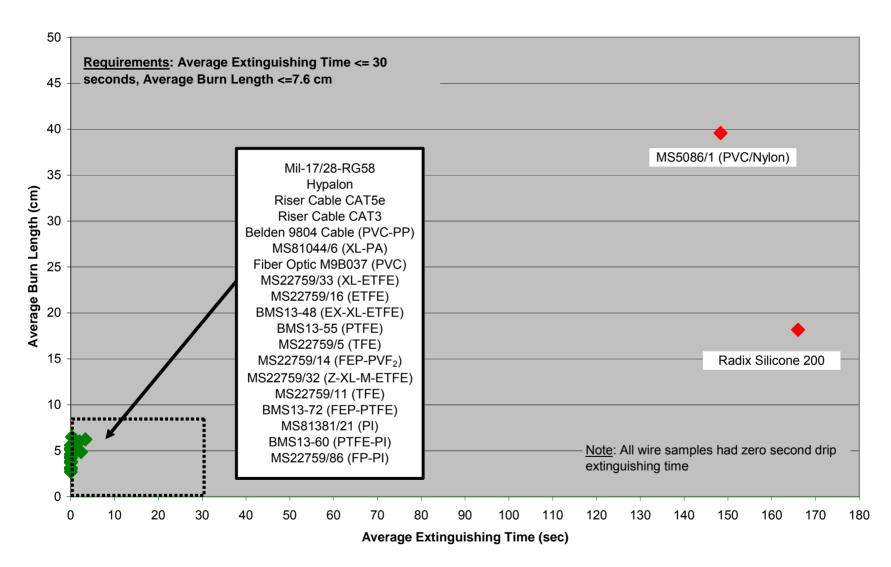
Planning Process: Scope

WBS 1.6 Material Testing

Tests to be conducted:

- 60-Degree Bunsen Burner Test
- Micro-Scale Combustion Calorimeter
 - Intermediate-Scale Fire Test

Wire Specification	Intermediate Scale Test	60 Degree Test	MSCC Test	RHP Test
Baseline	Х	N/A	N/A	Oct-08
Belden 9804 Cable(PVC-PP)	Х	X	Х	Oct-08
BMS13-48 (Ex-XL-ETFE)	Х	Х	Х	Oct-08
BMS13-55 (PTFE)	Х	X	Х	Oct-08
BMS13-60 (PTFE-PI)	Х	Х	Х	Oct-08
BMS13-72 (FEP-PTFE)	Х	X	Х	Oct-08
Braidless Silicone 200 Lead Wire	Х	Х	Х	Oct-08
Fiber Optic Cable M9B037 (PVC)	Х	Х	Х	Oct-08
Hitachi Riser Cable Cat 3 (FR-PVC)	Х	Х	Х	Oct-08
Hitachi Riser Cable Cat 5e: (FR-PO)	Х	X	Х	Oct-08
Hypalon Hook-up Wire	X	X	Х	Oct-08
M17/28-RG58 (PVC-PE)	Х	Х	Х	Oct-08
MS 22759/16 (ETFE)	Х	Х	Х	Oct-08
MS 22759/32 (Z-XL-M-ETFE)	Х	X	Х	Oct-08
MS 5086/1 (Nylon-PVC)	Х	Х	Х	Oct-08
MS 81044/6 (XL-PA)	Х	X	Х	Oct-08
MS 81381/21 (PI)	Х	Х	Х	Oct-08
Neoprene Hook-up Wire	Х	X	Х	Oct-08
SAE AS 22759/11 (TFE)	Х	Х	Х	Oct-08
SAE AS 22759/14 (FEP-PVF ₂)	Х	X	Х	Oct-08
SAE AS 22759/5 (Ar-TFE)	Х	X	Х	Oct-08
SAE AS22729 (FP-PI)	Х	X	Х	Oct-08
SAE AS22759/33 (XL-ETFE)	X	X	X	Oct-08

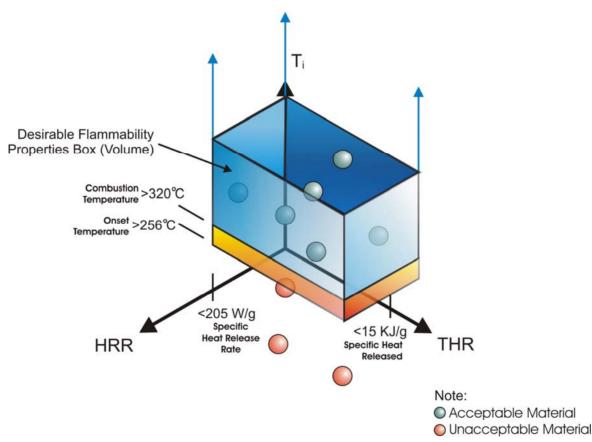

WBS 1.6 Material Testing

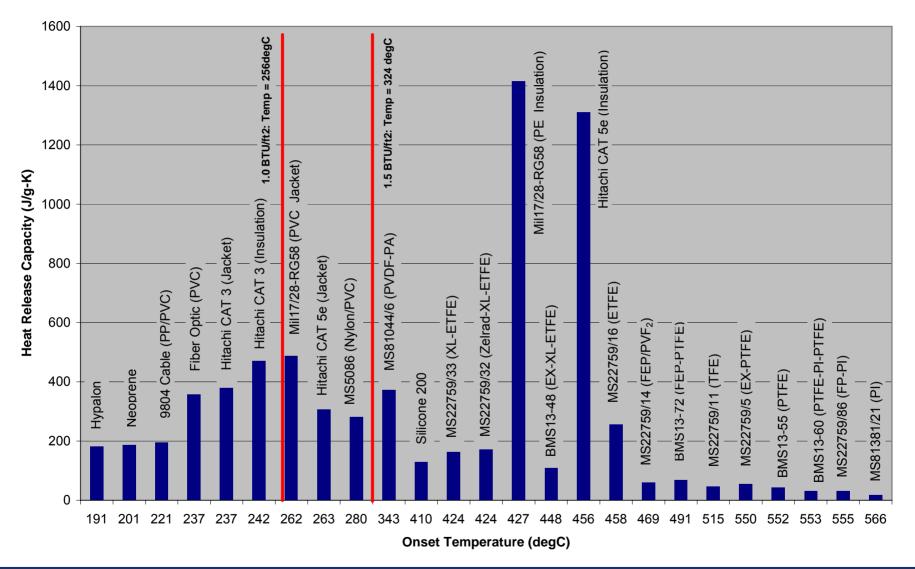
- 60-DEGREE BUNSEN BURNER TEST FOR ELECTRIC WIRE
 - Test Protocol: Chapter 4 of
 DOT/FAA/AR-00/12 "Aircraft Materials Fire
 Test Handbook"
 - Sample Size: 76.2 cm (mark: 20.3 cm); mounted at 60 degrees from horizon
 - Heat Source: Methane Flame (T>954C), perpendicular to wire sample
 - Heat Source Exposure: 30 sec
 - Flame Extinguishing Time: <30 sec
 - Burn Length: <7.6 cm
 - Drip Extinguishing Time: <3 sec</p>

FAA 60-DEGREE BUNSEN BURNER TEST FOR ELECTRIC WIRE

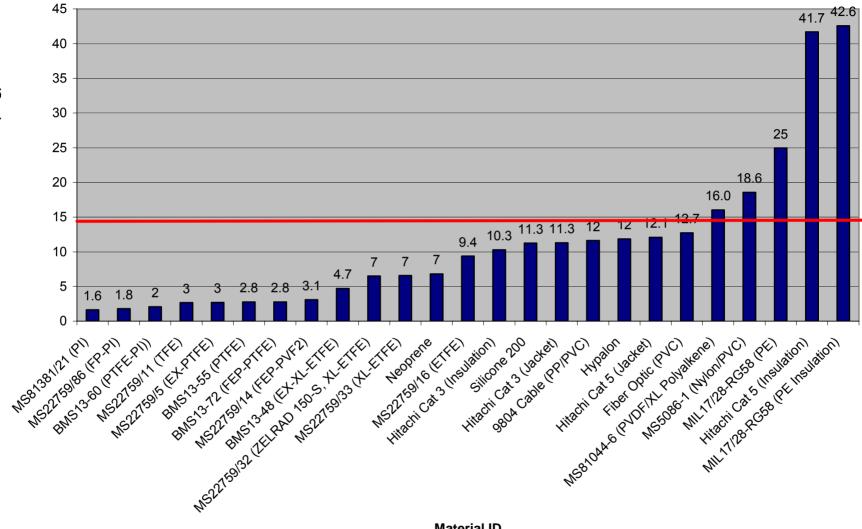
Wire Sample: MIL-17/28-RG58 (B.L. = 5.6 cm, FET = 3 sec)

WBS 1.6 Material Testing


- MICRO-SCALE COMBUSTION CALORIMETER TEST
 - Test Protocol: FAA Report
 DOT/FAA/AR-01/117 "A Micro-scale
 Combustion Calorimeter"
 - Sample Size: milligram range
 - Heat Source: Heating Coils (ramps up from 21 to 900 °C)
 - Heat Source Exposure: 1°C per sec to effect pyrolysis
 - Not a compliance test



Micro-Scale Combustion Calorimeter Fireworthy Box (From Ducting Tests)



MICRO-SCALE COMBUSTION CALORIMETER TEST OF WIRES/CABLES

MICRO-SCALE COMBUSTION CALORIMETER TEST OF WIRES/CABLES

Material ID

Development of an Improved Fire Test Method and Criteria for Aircraft Electrical Wiring

Total Heat Release (kJ/g)

Federal Aviation Administration

WBS 1.6 Material Testing

• INTERMEDIATE-SCALE FIRE TEST

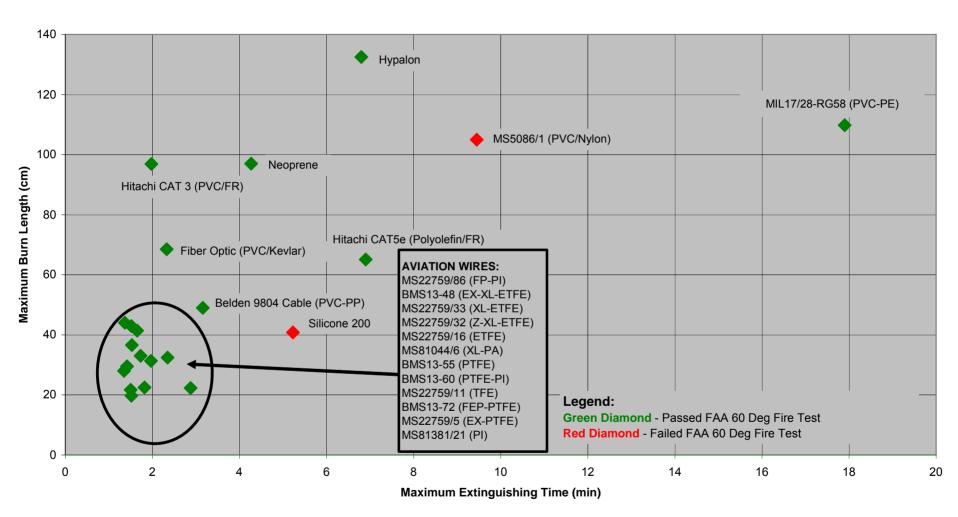
Test Protocol: FAA Report DOT/FAA/AR08/4 – "Development of an Improved Fire Test
Method for Aircraft Ducting," February 2008

Sample Size: bundle of wire, 1.27 cm in diameter, 304.8 cm long

Heat Source: Polyurethane Foam Block + 10
cc of Heptane (Avg HF = 77 kW/m2, and Avg T
= 810 °C)

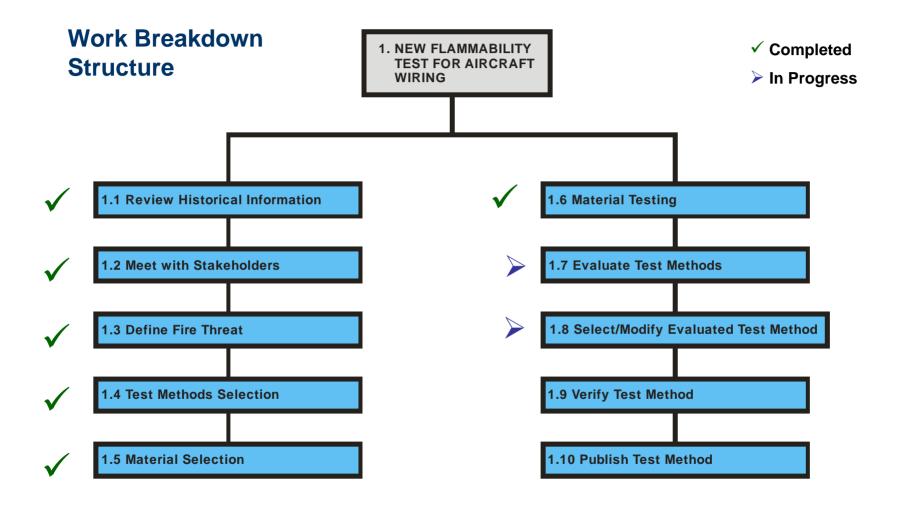
– Heat Source Exposure: ~8 minutes; peak occurrence ~ 1min

- Test Duration: 16 minutes
- Not a compliance test



INTERMEDIATE-SCALE FIRE TEST OF WIRES/CABLES

Wire Sample: BMS13-60 (B.L. = 29.5 cm, FET = 1.33 min)


Wire Sample: MS81044/6 (B.L. = 25.7 cm, FET = 1.83 min)

Wire Sample: MIL-17/28-RG58 (B.L. = 109.8 cm, FET = 17.9 min, dripped)

Planning Process: Scope

WBS 1.7 EVALUATE TEST METHODS

- Standard tests to be evaluated:
 - Radiant Panel Test (FAR 25.856)
 - \rightarrow Used for aircraft thermo/acoustic insulation
 - \rightarrow Modified version was proven acceptable to test aircraft ducting
 - \rightarrow Acceptance Criteria:
 - Fire Propagation
 - After Flame Extinguishing Time
 - \rightarrow Parallel (Homogeneous) Heat Flux
 - \rightarrow Gradient Heat Flux

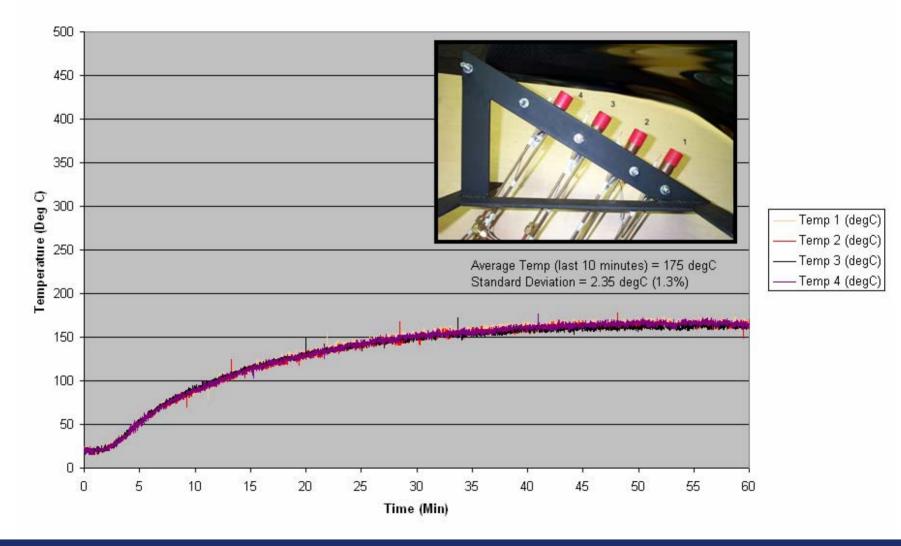
WBS 1.7 EVALUATE TEST METHODS (CONT.)

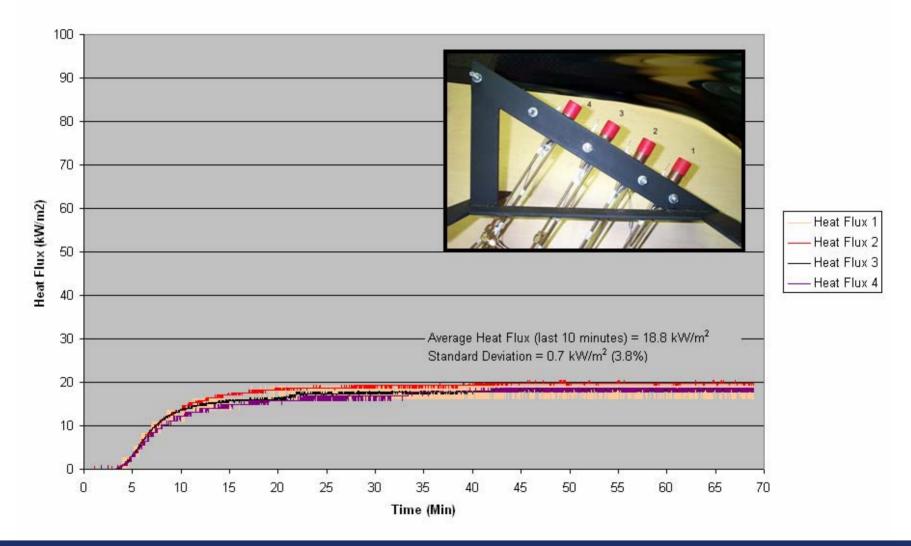
• <u>Parallel (Homogeneous) Heat Flux</u> - The Radiant Heat Panel components were evaluated to determine:

> if the heat across the face of the radiant panel was consistent

- at what distance from the radiant panel, parallel to it, the temperature is 256°C (RHP may be calibrated at 11.3 kW/m² or 17 kW/m²).

 if the pilot flame will reach the specimen wire (when wire is setup parallel to radiant panel)


- the pilot impingement time



RADIANT HEAT PANEL CHARACTERIZATION TESTS Temperatures Across Panel (@ 19 cm Parallel)

RADIANT HEAT PANEL CHARACTERIZATION TESTS Temperatures Across Panel (@ 19 cm Parallel)

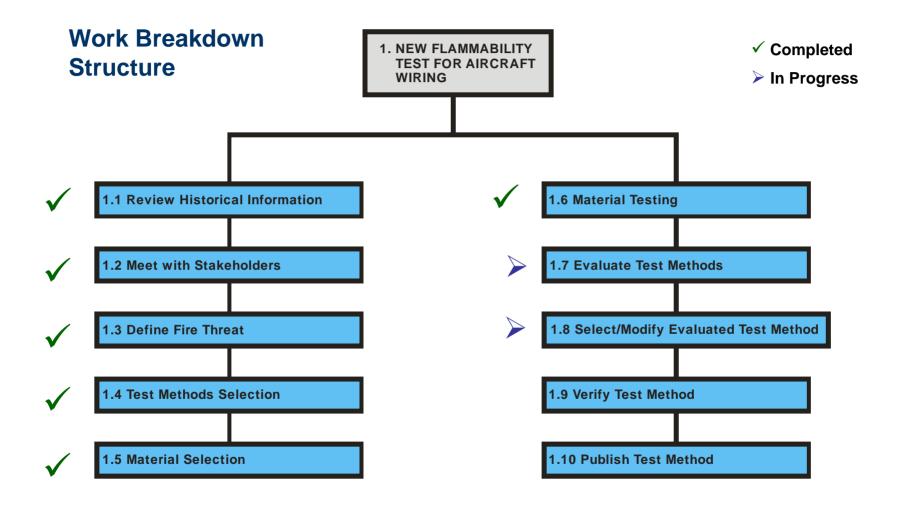
WBS 1.7 EVALUATE TEST METHODS (CONT.)

- Determined distance from panel and impingement time:
 - The distance of 15.24 cm (or 6") was measured to achieve 256°C at the wire when the RHP was calibrated at 17 kW/m²
 - The pilot reached the wire as it swiveled down (tip of blue flame)
 - Ran 2 tests at 30 seconds impingement
 <u>Result</u>: 20 AWG wire broke
 - Ran 6 tests at 15 seconds impingement
 <u>Result</u>: 20 AWG did not break during test

WBS 1.7 EVALUATE TEST METHODS (CONT.)

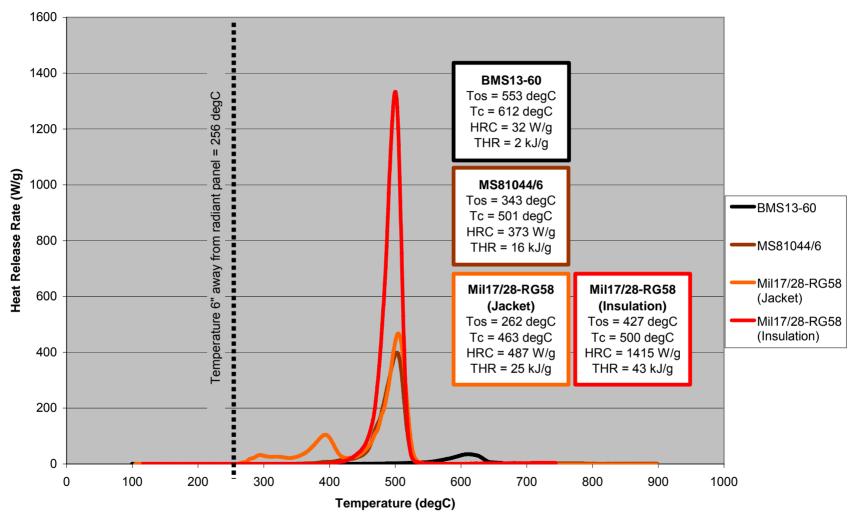
- Parallel Heat Flux Test -
 - Combine FAA 60 Degree wire test with Radiant Heat Panel test
 - Wire parallel to radiant heat panel (30 degrees)
 - Calibrate RHP to 17 kW/m2 (1.5 BTU/ft2 sec)
 - Place the wire 15.2 cm (6") away from the radiant heat panel
 - Pre-heat wire for 1 minute @ 256 °C
 - Pilot impingement time for 15 seconds

WBS 1.7 EVALUATE TEST METHODS (CONT.)


- <u>Gradient Heat Flux Test</u> This test will be conducted if the Parallel Heat Flux test is not successful.
 - Wire test specimens as "Flat Sheets"
 - RHP calibrated at 11.3 kW/m² (1 BTU/ft2 seconds).
 - One minute pre-heat
 - The pilot impingement time: 15 seconds

Planning Process: Scope

WBS 1.8 Select/Modify Evaluated Test Method


Patent Pending

	-		
-		_	
-	-		

Wire Specification	RHP Test (Version 1)
Baseline	
Belden 9804 Cable(PVC-PP)	
BMS13-48 (Ex-XL-ETFE)	
BMS13-55 (PTFE)	
BMS13-60 (PTFE-PI)	X
BMS13-72 (FEP-PTFE)	
Braidless Silicone 200 Lead Wire	
Fiber Optic Cable M9B037 (PVC)	
Hitachi Riser Cable Cat 3 (FR-PVC)	
Hitachi Riser Cable Cat 5e: (FR-PO)	
Hypalon Hook-up Wire	
M17/28-RG58 (PVC-PE)	X
MS 22759/16 (ETFE)	
MS 22759/32 (Z-XL-M-ETFE)	
MS 5086/1 (Nylon-PVC)	
MS 81044/6 (XL-PA)	X
MS 81381/21 (PI)	
Neoprene Hook-up Wire	
SAE AS 22759/11 (TFE)	
SAE AS 22759/14 (FEP-PVF ₂)	
SAE AS 22759/5 (Ar-TFE)	
SAE AS22729 (FP-PI)	
SAE AS22759/33 (XL-ETFE)	

MICRO-SCALE COMBUSTION CALORIMETER TEST OF WIRES/CABLES INSULATION/JACKET

Wire Sample: BMS13-60 (B.L. = 2 cm, FET = 0 sec)

Wire Sample: MS81044/6 (B.L. = 2.5 cm, FET = 2 sec)

Wire Sample: Mil-17/28-RG58 (B.L. = >15 cm, FET = >60 sec)

Final Words

OBSERVATIONS:

- The results obtained in the ISF tests confirms that the FAA 60 Degree Flammability Test is not a good discriminator
- The MSCC provided useful information about the flammability properties of the wires insulation
- The Parallel Heat Flux Test method (30 Degrees Radiant Heat Panel Test) looks promising.

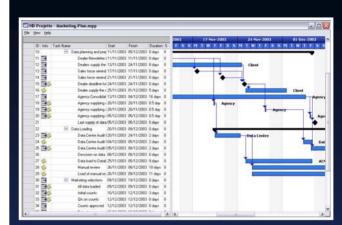
OBSERVATIONS:

	FAA 60 Degree Flammability Test		Intermediate-Scale Test		30 Degree Radiant Heat Panel Test	
Wire/Cable ID	Burn Length (cm)	Flame Extinguishing Time (sec)	Burn Length (cm)	Flame Extinguishing Time (sec)	Burn Length (cm)	Flame Extinguishing Time (sec)
BMS13-60	3.1	0.0	29.5	79.8	1.9	0.0
MS81044/6	4.9	2.3	25.7	109.8	2.7	4.3
Mil-17/28-RG58	7.1	4.0	109.8	1074.0	>15	>60

Final Words

WHAT'S NEXT:

- The FAA will continue testing the remaining 19 insulation specimens using the 30 Degrees RHP test method (Parallel method)
- If results are not successful, proceed with the Gradient Heat Flux test method



Final Words

PROJECT STATUS:

Project Tasks % Completion = 68% Cost Performance Index = 1.05 Schedule Performance Index = 0.98

Go Back

