HEAT FLUX SENSITIVITY STUDY IN NBS/OSU/RP/SEAT TEST

2009 October Materials Meeting

Materials Working Group Michael Burns, FAA Tech Center October 21st & 22nd, 2009

Federal Aviation Administration

Heat Flux Sensitivity Study – OSU/NBS/RP

- 4 Gages Were Selected For Study In OSU/NBS & RP
 - » 1.) MEDTHERM (GARDON) 0-5 BTU
 - » 2.) MEDTHERM (SCHMIDT-BOELTER) 0-5 BTU
 - » 3.) VATELL (GARDON) 0-5 BTU
 - » 4.) HUKSEFLUX (GARDON) 0-5 BTU
- The Gages Were Calibrated By Comparison To A NIST Calibrated HFG
- The Transfer Method
 Was Made Using A Heated
 Graphite Plate

Heat Flux Sensitivity Study – OSU/NBS/RP

- Step #1
 - The FAA HFG (NIST Calibration Factor) Was Initially Used To Set Heat Flux
- Step #2
 - 4 HFG's Were Installed In Apparatus And Heat Flux Recorded Using Manufacturers Calibration Factor
- Step #3
 - 4 HFG's Were Installed In Apparatus And Heat Flux Recorded Using NIST Calibration Factor
- Step #4
 - 4 HFG's Were Installed And Heat Flux Set Using Manufacturers Calibration Factor
 - FAA HFG Was Installed After Each Gage And Heat Flux Recorded Using NIST Calibration Factor

Heat Flux Sensitivity Study – OSU/NBS/RP

• Calibration Factor (NIST vs. Manufacturer's)

For Each Gage, The Manufacturer's Calibration Factor Was Found To Be Higher Than The NIST Calibration Factor.

HFG	Man. Cal. Factor	FAA (NIST) Cal. Factor	<u>Delta</u>
Medtherm (Gardon)	0.5889	0.5747	-2.4%
Medtherm (Schmidt-Boelter)	0.484	0.4397	-9.2%
Vatell	0.56	0.504	-10.0%
Hukseflux	0.2689	0.2537	-5.7%

NBS Heat Flux Sensitivity Study Manufacturer's Calibration Factor vs. NIST Calibration Factor

Medtherm (Gardon)

Medtherm (Schmidt-Boelter)

□ Vatell □ Hukseflux

- 3 Materials Tested At The Highest And Lowest Heat Flux Found
- Material #1
 Schneller Panel (Adhesive Sample Face)
- Material #2

1/8" Honeycomb Panel W/ Textured Face

Material #3
 3/8" Honeycomb Panel W/ Textured Face

NBS Heat Flux Sensitivity Study 2.2 W/cm² vs. 2.5 W/cm² (13.6% Delta)

OSU Heat Flux Sensitivity Study Manufacturer's Calibration Factor vs. NIST Calibration Factor

■ Medtherm (Gardon)

Medtherm (Schmidt-Boelter)

Vatell

Hukseflux

- 3 Materials Tested At The Highest And Lowest Heat Flux Found
- Material #1
 Schneller OSU Test Panel
- Material #2
 - 1" Honeycomb Panel W/ Textured Face
- Material #3

11/16" Honeycomb Panel W/ Textured Face (Double Peak Material)

OSU Heat Flux Sensitivity Study Avg. Peak Delta With 14.3% Increase In HF

OSU Heat Flux Sensitivity Study Avg. Time to Peak Delta With 14.3% Increase In HF

OSU Heat Flux Sensitivity Study Avg. Total HR Delta With 14.3% Increase In HF

RP Heat Flux Sensitivity Study Manufacturer's Calibration Factor vs. NIST Calibration Factor

Medtherm (Gardon)

Medtherm (Schmidt-Boelter)

Vatell

Hukseflux

LOWER SETTING - 1.361 BTU/Ft2-sec

1.) Polyfab – Blocking Layer over 0.6 pcf Fiberglass Setpoint Thermocouple 1050 DegF 306 DegF <u>Afterflame (seconds)</u> Flame Propagation 0 0.75 0 0.75 0 0.75

2.) Polyimide film over 2 layers of 0.34 pcf Fiberglass Setpoint Thermocouple 1051 DegF 319 DegF <u>Afterflame (seconds)</u> Flame Propagation 0 0.75 0 0.75 0 0.75

3.) Metallized PEEK Film over 2 layers of 0.34 pcf Fiberglass Setpoint Thermocouple 1051 DegF 319 DegF <u>Afterflame (seconds)</u> Flame Propagation 0 0.75 0 0.75 0 0.75

4.) Material 1			
Setpoint Thermocouple			
1047 DegF 306 DegF			
Afterflame (seconds)	Flame Propagation	<u> Pass/Fail</u>	
0	.75		Pass
0	0.5		Pass
0	0.75		Pass
5.) Material 2			
Setpoint Thermocouple			
1047 DegF 306 DegF	•		
Afterflame (seconds)	Flame Propagation	Pass/Fail	
0	0.75		Pass
0	1.0		Pass
0	1.0		Pass
6.) Material 3			
Setpoint Thermocouple			
1047 DegF 306 DegF	•		
Afterflame (seconds)	Flame Propagation	Pass/Fail	
0	0.75		Pass
*2.6	0.75		Pass
0	0.75		Pass
* Burned in the well			

7.) Material	4			
Setpoint ⁻	Thermoco	uple		
1047 DegF:	306 DegF			
Afterflame ((seconds)	Flame Propagation	Pass/Fail	
0		0.5		Pass
1.0		0.75		Pass
0		0.75		Pass

HIGHER SETTING - 1.624 BTU/Ft2-sec

1.) Polyfab – Blocking Layer over 0.6 pcf FiberglassSetpointThermocouple*1139 DegF338 DegF*40 DegF Temperature drop upon opening drawerAfterflame (seconds)Flame Propagation2.50.7500.7500.7500.75

2.) Polyimide film ove	er 2 layers of 0.34 pcf Fiberglass	
Setpoint Thermoco	uple	
*1143 DegF	354 DegF	
*40 DegF Temperatur	e drop upon opening drawer	
Afterflame (seconds)	Flame Propagation	
0	0.75	
1	0.75	
3	0.75	
3.) Metallized PEEK F	ilm over 2 layers of 0.34 pcf Fiberg	glass
Setpoint Thermoco	uple	
1143 DegF 354 DegF		
Afterflame (seconds)	Flame Propagation	
0	1.5	
0	1.0	
0	1.75	
4.) Material 1		
Setpoint Thermoco	uple	
1142 DegF 350 DegF	•	
Afterflame (seconds)	Flame Propagation Pass/Fail	
0	1.0 P	ass
0	1.0 P	ass
0	0.75 P	ass

5.) Material 2			
Setpoint Thermocouple			
1142 DegF 350 DegF			
Afterflame (seconds)	Flame Propagation	Pass/Fail	
0	1.25		Pass
*6.5	0.75		Fail
0	0.75		Pass
*Around top of ignito	r		
6.) Material 3			
Setpoint Thermoco	uple		
1142 DegF 350 DegF			
Afterflame (seconds)	Flame Propagation	Pass/Fail	
0	1.0		Pass
0	0.75		Pass
0	1.5		Pass
7.) Material 4			
Setpoint Thermocouple			
1142 DegF 350 DegF	•		
Afterflame (seconds)	Flame Propagation	Pass/Fail	
0	1.0		Pass
0	1.0		Pass
0	1.0		Pass

Seat Test Heat Flux Gage Calibration / Sensitivity Study

- Compared which method of seat testing would be most affected by heat flux measurements, the handbook method or the rule.
 - Two Vatell gages of same range (0-20 BTU) using Manufacturer's Calibration factor and FAA (NIST) Calibration Factor
- Handbook
 - Air velocity is restricted to a certain range but the heat flux must be a minimum of 10 BTU/ft^{2*}sec (no maximum).
- Rule
 - No specification for velocity Any air velocity that gets you to a specified range of heat flux (10.5 BTU/ft2s +/- 0.5 BTU/ft2s).
- Typically the measured flame temperatures are difficult to achieve, while heat flux is relatively easy to get.
- Measured temperatures at two air velocities and found the temperatures to be in calibration.
- Looked at how measured heat flux changes with air velocity and what the test results would be at the minimum heat flux (10 BTU/ft^{2*}sec) for the FAA (NIST) Calibration Factor and Vatell Calibration Factor.

Measured H.F. vs. Burner Inlet Air Velocity

 V_{air} =2000 fpm; H.F.=10.0 BTU/ft²s (Vatell Slope) Mass Loss = 13.9% → Fail

Results

- As inlet air velocity increases, measured heat flux decreases.
- Since the handbook has a specified range of air velocities, we ran the tests by the rule, which
 has an unlimited velocity range but specified H.F range.
- We wanted to see that if you set the burner for 10 BTU/ft^{2*}sec (minimum H.F.) with both of the slopes, how the results would compare.

Vatell Calibration Factor

- Set Burner to 10 BTU/ft^{2*}sec
 - Increased air velocity to 2000 fpm
- Tested seat mass loss of 13.9% (failure)
- FAA (NIST) Calibration Factor
 - Set burner to 10 BTU/ft^{2*}sec
 - Decrease of air velocity to 1650 fpm
 - Tested seat mass loss of 8% (pass)
- Summary
 - Just going by heat flux, if a lab wanted to run at 10 BTU/ft2s, which one would assume would give you the least conservative flame, the test would fail if you used the vatell slope and pass If you used the FAA slope.
 - This is opposite of what everyone else is probably seeing, because for the radiant heat sources, a vatell slope will give you a heat flux that is higher than what the true heat flux is with the FAA slope, and materials that pass with a vatell slope will fail with an FAA slope.
 - This burner has a convective portion of total heat transfer that is probably close to the magnitude of the radiant portion.
 - Gardon gauges are particularly sensitive to convection, and since they are calibrated with a
 pure radiation source, they may be giving readings that aren't indicative of the actual total
 heat flux to the surface in the oil burner.

