QUALIFICATION TEST FOR A/C PANEL ADHESIVES

Presented to: International Aircraft Materials Fire Test Working Group, Atlantic City

By: Rich Lyon, AJP-6320

Date: October 21, 2009

Federal Aviation Administration

OBJECTIVE

Develop a qualification test for flammability of adhesives used in bonded details.

PURPOSE

Establish similarity of bonded details.

APPLICATIONS Certification of New Parts

International Materials Fire Test Working Group

ADHESIVES TASK GROUP

3M American Airlines Boeing **Bombardier Bostik C&D** Aerospace **Dassault** FAA Henkel

INDUSTRY-PROPOSED METHODS OF COMPLIANCE FOR CERTIFICATION OF INTERIOR MATERIALS

Part 2: Methods That Will Require Supporting Data

	1	25.853(a)	25.853(d)
Ref. No.	Feature / Construction	Bunsen Burner Similarity	Heat and Smoke Similarity
28	BONDED DETAILS	Testing detail without adhesive * to Appendix F substantiates the bonded configuration	Test required if: $A > 2 \text{ ft}^2$ Possible Test if: $1 < A < 2 \text{ ft}^2$ No test required* if: $A < 1 \text{ ft}^2$
		*For FAA Qu	alified Adhesives?

ADHESIVE QUALIFICATION TEST ISSUES

FAR 25 versus Other Measurement Method

Sample Form

Effect of Adherends

Effect of Thickness: Does thinner substantiate thicker?

Example: Thermoplastic Thickness Ranges 70 70 Peak Heat Release Rate, kW/m² otal Heat Release, kW-min/m² 60 60 Peak HRR 50 50 Proposed range 40 40 30 30 20 20 **Total Heat Release** 10 10 0 0 **EUROPLEX PPSU Clear** -10 -10 .080 0.12 0.16 0.20 0.24 0.28 0 .040

OSU Peak HRR of 0.040" does not substantiate .080"- 0.16"

Thickness, inches

Standard Test Method for Measuring Flammability Properties of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry, ASTM D 7309

THERMAL COMBUSTION PROPERTIES FROM MCC

International Materials Fire Test Working Group

HEAT RELEASE CAPACITY VERSUS COST OF PLASTICS

Capacity (η_c), J/g-K Release Heat

^{*}Truckload Prices, 2001

VERTICAL BUNSEN BURNER TEST (114 plastics)

Probability of Passing the UL 94 V-0 Requirement

HAND LAY-UP OF ADHESIVE / RESIN OSU SAMPLES

- Fiberglass-reinforced adhesive samples are made by hand lay-up.
- Samples cured between two Teflon-coated aluminum plates in heated press.
- Cured samples trimmed to 6" x 6" for OSU HRR testing.
- Resulting samples ~ 40% resin by weight.

OSU TESTING OF ADHESIVE RESINS

OSU PHRR (binned data) 101 RESINS AND PLASTICS)

Maximum Heat Release Capacity from Curve Fit

International Materials Fire Test Working Group

October 21, 2009

OSU Data for AIRCRAFT CABIN MATERIALS

Transform Quantitative Data into Qualitative Data Using Pass/Fail Criterion

14 CFR 25.853

• HRR
$$\leq$$
 65 kW/m² = Pass = P

• HRR > 65 kW/m² = Fail **= F**

OSU PHRR (101 RESINS AND PLASTICS)

Probability that pHRR \leq 65 kW/m²

Heat Release Capacity (η_c), J/g-K

EFFECT OF ADHERENDS and THICKNESS (Additive Approach Using MCC Data)

EFFECT OF ADHERENDS and THICKNESS (ThermaKin Numerical Burning Model)

Transient energy and mass balance calculation

OSU HRR OF BONDED CONSTRUCTION (ThermaKin Simulation)

OSU HRRs of BONDED CONSTRUCTIONS (ThermaKin)

