Status of Research & Testing to Replace Halon Extinguishing Agents in Civil Aviation

Douglas Ingerson Louise Speitel Constantine Sarkos

Fire Safety Team FAA Wm. J. Hughes Technical Center Atlantic City International Airport, NJ 08405

International Aircraft Systems Fire Protection Working Group April 3, 2008 London, UK

Federal Aviation Administration

Current Usage of Halon 1301/1211

Cargo Compartments

Engine Nacelles

Hand Held Extinguishers

Lavatory Trash Receptacles

Halon Replacement in Civil Aviation

- Halon Fire Extinguisher Used in Civil Aviation for Over 45 Years
- Montreal Protocol Banned Halon Production (Not Use) on January 1, 1994
- Example of Relative Agent Weights (B777): Lavs (1.5 to 3.0 lbs), Hand-Held (10 to 17.5 lbs), Engine/APU (58 lbs), Cargo (377 lbs)
- FAA Established International Halon Replacement Working Group (Now Called International Systems Fire Protection Working Group) to Develop Minimum Performance Standards (MPS) for Each Application
- Purpose of Each MPS is to Define Full-Scale Fire Tests to Demonstrate Equivalency
- Tests Developed at FAA Technical Center

Agents Tested

Agent	Chemical Formula	Name	
Halon 1301	CBrF ₃		
Halon 1211	CBrCIF ₂		
HFC-227ea	CF ₃ CHFCF ₃	FM-200	
HFC-125	CHF ₂ CF ₃	FE-25	
FIC-13I1	CF ₃ I	Triodide	
2-BTP	CH ₂ CBrCF ₃		
HCFC Blend B	CF ₄ /CHCl ₂ CF ₃	Halotron I	
HFC-236fa	CF ₃ CH ₂ CF ₃	FE-36	
FK-5-1-12	CF ₃ CF ₃ COCF(CF ₃) ₂	Novec 1230	
Water Mist	H ₂ 0		
Water Mist/Nitrogen	H ₂ 0/N ₂		

Lavatory Trash Receptacle Summary

- FM-200 and FE-36 Passed MPS Test
- Airbus and Boeing Offer Lavatory Extinguishers
- MPS Report: DOT/FAA/AR-96/122

Lavatory Trash Receptacle Extinguishers

Hand-Held Extinguishers Summary

- Two Fire Tests Required in MPS
- Hidden Fire Test Standard (Effectiveness)
 - Developed by IASFPWG
 - U.L. Offers Test Approval
- Seat Fire Extinguishing Test (Toxicity)
 - Full-Scale Tests at Tech Center
 - Measure Agent Decomposition Products
- Draft AC 20-42D: "Hand Fire Extinguishers for Use in Aircraft"
 - Safe Agent Discharge for Wide Range Aircraft/Compartment Volumes
- Know Agents Listed by U.L. (Hidden Fire Test)
 - HCFC Blend B (Halotron 1)
 - HFC-227ea (FM-200)
 - HFC-236fa (FE-26)
- MPS Report: DOT/FAA/AR-01/37

Hidden Fire Test Apparatus

Seat Fire Extinguishing Test (Toxicity)

FAA Advisory Circular AC 20-42D

- Guidance for New Installations of Required Hand-Held Extinguishers
- Lists FAA-Approved Replacement Agents
 - HCFC Blend B
 - HFC-227ea
 - HFC-236fa
- Would replace AC 20-42C
- Developed with Experts in IASFPWG
- Publish in Federal Register in 2008 for Public Comment

MINIMUM SAFE COMPARTMENT VOLUME NO VENTILATION

For the following 5 B:C extinguishers, released at 70°F: (21.1°C)

Agent	Agent Weight ¹ (lbs)	Minimum Safe Volume (ft ³) ^{2, 3}					
		Sea Level (For info only)	8,000 ft P Altitude (Pressurized Cabin)	14,000 ft P Altitude	18,000 ft ⁴ P Altitude Nasal Cannula Oxygen Supply	25,000 P Altitude Diluter-Demand Oxygen Mask	
HCFC Blend B	5.2	1337	1799	2276	2678	3586	
HFC-227ea	5.5	99	135	170	200	269	
HFC-236fa	4.75	80	107	128	159	214	
Halon 1211	2.5	556	749	947	1111	1497	
Halon 1301	5.0	192	259	327	385	517	

1. The agent weight for a 5 B:C extinguisher is extinguisher dependent.

2. Use this table if air change time is unknown or exceeds 6 minutes

3. Multiply this number by the number of extinguishers in the aircraft

4. If nasal cannula oxygen on-board

n<mark>asal cannula</mark>

AGENT TOXICITY: NO. OF 5BC BOTTLES ALLOWED

Aircraft/ Helicopter	Vol (ft ³)	Max No. Seats	AC20- 42C & UL1093	AC40-22D				
			Halon 1211	Halon 1211	Halon 1301	HCFC Blend B	HFC- 227ea	HFC- 236fa
Cessna 152	77	2	0.3	0.1	0.3	0.04	0.5	0.7
Cessna 210C	140	6	0.5	0.2	0.5	0.08	1.0	1.3
Cessna C421B	217	10	0.7	0.3	0.8	0.1	1.5	2.0
Sikorsky S76	204	14	0.7	0.3	0.8	0.1	1.5	1.9
B727-100	5,333	131	17	7.1	21	3.0	38	50
B767-200	11,265	255	36	15	43	6.3	80	105
B 747	27,899	500	90	37	108	16	198	260

Less than one 5 B:C extinguisher allowed

MODELING ARTERIAL BLOOD CONCENTRATIONS OF HALOCARBONS USING 1st ORDER KINETICS

KINETIC MODELING OF ARTERIAL HALON 1211 BLOOD CONCENTRATION IN VENTILATED AIRCRAFT

The peak arterial concentrations are used to develop the selector curves

KINETIC MODELING OF ARTERIAL HFC236fa BLOOD CONCENTRATION IN VENTILATED AIRCRAFT

The peak arterial concentrations are used to develop the selector curves

HFC-236fa SELECTOR FOR PRESSURIZED VENTILATED COMPARTMENTS

Engine Nacelle/APU Summary

- Full-Scale Engine Nacelle Fire Simulator Only Exists at Tech Center
- Spray and Residual (Pan) Fires/Jet Fuel, Hydraulic Fluid, Engine Oil
- Two Mass Flow Rates/Two Temperatures
- Equivalency Determinations (Halon 1301 = 6%)
 - HCF-125 = 17.6%
 - $CF_3I = 7.1\%$
 - FK-5-1-12 = 6.1%
- FAA/Airbus Tests in ENFS
 - Proprietary Agent Equivalency/Certification Criteria Determined
 - Agent/System Will be Made Available for Production Airplanes
- FAA/Walter Kidde/Boeing Began Testing New Agent in ENFS in 2007
- MPS Report: Draft (Available)

IMAGERY - TEST FIXTURE

Extinguishing Agents in Civil Aviation

Status of Research & Testing to Replace Halon Extinguishing Agents in Civil Aviation

Federal Aviation Administration

Effect of Mass of HFC-125 on Reignition Time Delay

Three Year Variation of Ignition Time Delays

Equivalent Concentration of HFC-125, CF3I, and FK-5-1-12 at Different Fire Scenarios

Comparison of Maximum Equivalent Concentrations of CF31 HFC-125, and FK-5-1-12 with NFPA 2001 Inerting and Cup Burner Data

Cargo Compartment Summary

- Full-Scale 2000 ft³ Test Article Specified in MPS
- Four Fire Scenarios
 - Bulk-Loaded Cargo
 - Containerized Cargo
 - Surface Burning Fire
 - Exploding Aerosol Can

Much Activity but Each Approach has Shortcomings

- HFC-125/FM-200: High Weight Penalty, High HF Concentrations, Ignition of Smoke Layer
- CF₃I: Toxicity Concerns
- 2-BTP/Novec 1230: Overpressures at Below Inerting Concentrations During Aerosol Can Scenario

• Water Mist/Nitrogen System Concept

- Promising but Requires Significant Development and Acceptance
- MPS Report: DOT/FAA/AR-TN05/20

Status of Research & Testing to Replace Halon Extinguishing Agents in Civil Aviation

178 Cardboard Boxes

Status Summary on Halon Replacement in Civil Aviation

- Lavatory: Replacement Agents (2) Identified and Are Being Installed in Newly Manufactured Aircraft
- <u>Hand-Held Extinguishers</u>: Replacement Agents/Extinguishers (3) Identified But Are Not Being Installed By Manufacturers Because of Increased Weight and Volume
- Engines:
 - Significant and Promising Activity last Several Years
 - One Manufacturer has Selected a Replacement Agent for a New Aircraft Design and Possibly Current Manufactured Aircraft
 - Another Manufacturer having New Agent Tested at FAA

<u>Cargo Compartments</u>:

- No Substantive Activity in Recent Years
- Previous Agents Tested Unsuitable or Require Significant Development
- Most Challenging and Most Important (Largest Halon Usage) Application
- FAA will Conduct Tests in Cooperation with the Aircraft Manufacturers

