

Dr. André Freiling 04 Aug 2020

Motivation

Source:

M. Karp, Smoke Generator Standarization for Certification Testing The Ninth Triennial International Fire & Cabin Safety Research Conference, Oct 30 2019

Background

- Due to health and safety concerns artificial smoke generators are used for inflight certification testing
- Smoke generator aerosols must be similar to real smoke for the false alarm resistant smoke detectors to alarm
- Standardizing the artificial smoke generators is necessary to ensure the reliability and integrity of the inflight smoke detection certification test

Motivation

Source:

A. Freiling, Certification of smoke detection systems in aircraft, The Ninth Triennial International Fire & Cabin Safety Research Conference, Oct 30 2019

Today's standards

- Flight tests are performed with different smoke generators
- The test programme is agreed in advance with airworthiness authorities
- Different aircraft manufacturers use different smoke generators and different modes of operation

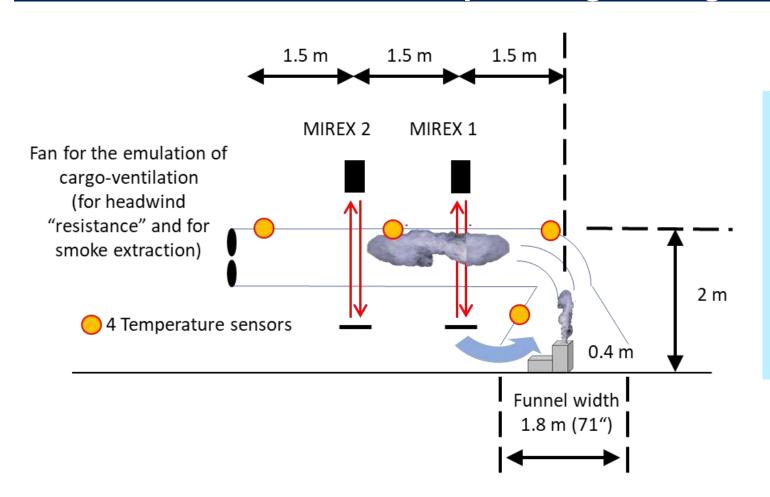
Standardisation is required!

Velocity

Particle size

Refractive index

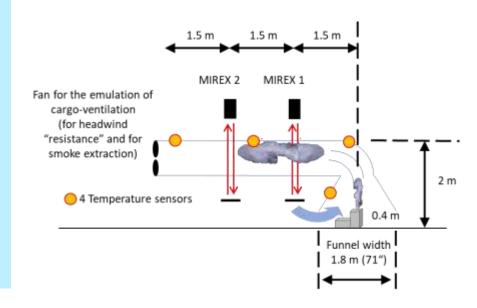
Ambient Temp


Certification of Smoke Detection Systems in Aircraft - Triennial Fire Salety Conference 2019 Atlantic City

AIRBUS

The last piece of the puzzle: Horizontal smoke velocity test

Goal: Simulation of smoke spreading at cargo ceiling


Technical data:

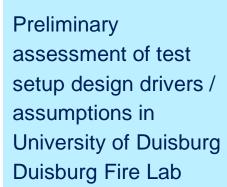
- Duct cross-section 0.8 m x 0.8 m
- Height of funnel: 0.8 m
- Cross-section at the funnel opening: 1.8 m x 1.8 m
- Volume of the funnel (incl. duct above): about 1.8 m³.
- Funnel half opening angle: 32°.

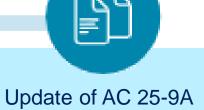
Design drivers/assumptions

- Dimensions should reflect reality: Cargo compartment height appr. 1-2m, distance between smoke detectors 1-3 meters.
- Duct cross-section 0.8 m (31.5"): Should be smaller than max MIREX size (1 m) AND as large as possible, reducing drag
- Vertical MIREX mounting prevents incorrect interpretations due to possible stratification.
- A fan simulates air flow caused by the aircraft ventilation system (headwind "resistance"): TBC during Test setup suitability assessment
- Temperature sensors adequately distributed
- Curves of the channel equipped with deflection plates to achieve as laminar flow as possible

Way forward

Construction of smoke channel at FAA Tech Center and / or University of Duisburg **Duisburg Fire Lab**


Final conclusion on smoke generator qualification parameters in task group



Round robin testing with smoke generators currently used for aircraft smoke detection system certification

Acknowledgements

Matthew Karp, FAA Technical Center

Dr. Thorsten Schultze, University of Duisburg-Essen

Enzo Canari, EASA

Thank you