Measuring Oxygen Concentration in a Fuel Tank Ullage

William Cavage AJP-6320 Fire Safety Team Wm. J. Hughes Technical Center Federal Aviation Administration

Federal Aviation Administration

ISFPWG Meeting Koeln, Germany May 19 - 20, 2009

Outline

- Background
- Technologies/Methods Examined
- Test Equipment and
 Procedures
- Results
 - Previous Results
 - Calibration Gas Exposure
 - Flight Simulation
- Summary

Background

- FAA has been seeking to improve fuel tank safety in the wake of TWA Flight 800 in July of 1996
 - Rule published requiring extensive flammability reduction on both future built and existing aircraft on present types
- The measurement of ullage oxygen concentration is important to the fuel tank inerting community when researching methods, validating models, and certifying systems
 - FAA method for measuring ullage oxygen concentration at reduced ullage pressures has been successful but can be cumbersome
 - Emerging products have the potential to simplify and improve upon R&D / Certification work for fuel tank inerting

Technologies/Methods Examined

- Improved FAA gas sampling method
 - Made design changes to OBOAS regulated sample train and packaging based on lessons learned during FAA flight testing
 - New system is lighter, smaller, quieter, but not proven to have equivalent level of safety
- Light Absorption with unregulated gas sample train (Oxigraf)
 - Unregulated sample train uses a sensor that measures infrared light absorption using a tunable laser diode (TLD technology)
 - Proprietary software used to interpret spectral data
- Optical fluorescence using in situ probe (ASF)
 - Small fiber optic probe uses spectrometer to interpret coherent light signal which is highly dependent on temperature/pressure
 - Used in situ (in place) which has many advantages (low power, small size/weight, rapid response) but also has limitations

FAA Oxygen Concentration Measurement Method

Measuring Ullage Oxygen Concentration February 10-12, 2009

Light Absorption Method using TLD

Oxigraf O2N2 Flight Test Oxygen Analyzer

Optical Fluorescence (ASF) Used In Situ

Testing Performed

- First had all methods used in a PVC tube which was flooded with various calibration gases at various temperatures and altitudes
 - Also examined response time of method by seeing how long it took for instrument to go from 5% to 15% (within 0.1% of stability)
- Second installed the available methods in test tank and exposed them to simulated CWT ullage environment and flight cycle
 - Used existing 17 cubic foot aluminum fuel tank in altitude chamber
 - Put fuel in tank as well as inerted the ullage with nitrogen
 - Performed simulated mission with ground heat up, ascent, cruise, and descent with simulated inerting system performance
 - Temperature between 110 & -10 °F, altitudes 0-36K feet

Block Diagram of Fuel Tank Ullage Simulation

Results – Previously Acquired Data

- Previously performed tests illustrated how the optical fluorescence method in situ could follow trends of FAA method with large magnitude errors
 - Had trouble giving valid numbers at low partial pressures

 Also the temperature cycling of the mission seemed to effect the data adversely

Results – Calibration Gas Exposure

- Exposed all methods to the stated calibration gases at several altitudes and temperatures typical of a commercial transport airplane fuel tank ullage
 - Preliminary data with optical fluorescence system did not do well so manufacturer went off to work out the problems
 - the FAA method and light absorption method duplicated calibration gases well (+/- 0.2% O₂ from 5-15% O₂)
- The light absorption method was the fastest responding method with the FAA method and the optical fluorescence method in a distant second (more than twice as slow)
 - The optical fluorescence has the potential to be the fastest when developmental software is made more streamlined
 - FAA method will never be significantly faster

Results – Airplane Fuel Tank Simulation

- Measured fuel tank test article ullage [O₂] with both the FAA method and the light absorption method
 - 120 Results of **Commercial Transport Airplane** _____ FAA Method Oxigraf Altitude Ullage Temp **Mission Simulation** Oxigraf and 12 100 0 0 FAA method Altitude (kFt) / Temperature (deg F) oncentration (%vol) very close 80 10 - The inerting 8 60 of test tank erratic due to 6 40 problems, but this illustrates 20 the small 2 n advantage of rapid 0 -20 20 40 60 80 100 120 160 180 0 140 200 response Time (mins)

Summary

- Both the FAA method and the light absorption method duplicate calibration gases well at a variety of conditions and both agree on oxygen concentration measurements made during a simulation of an inert commercial transport airplane fuel tank flight cycle
 - Light absorption system has faster response time but appears to be of little advantage
 - Light absorption system already performed some flight testing and is slated for more with several OEMs / Operators
- Optical fluorescence method still working out problems but slated for more chamber examinations in May

