Engine Nacelle Halon Replacement

Presented to: International Aircraft Systems Fire Protection Working Group

> By: Mr. Dave Blake for Douglas Ingerson, Engineer Federal Aviation Administration WJ Hughes Technical Center Fire Safety Team Atlantic City Int'l Airport, NJ USA tel : 609-485-4945 email : Douglas.A.Ingerson@faa.gov

Federal Aviation Administration

Presentation Overview

• Discuss the "MPSe rev03 to rev04" transition

- Overview
- Status
- Flow visualization, Small-scale wind tunnel (SSWT) activity

- Issues driving the test process revision
 - Terminate the use of halon 1301 in the process
 - Minimize the impact of agent injection on determining the "equivalent" agent quantity

MPSe Rev 03 → 04, Overview Terminating Halon 1301 Usage

- Modify halon benchmark process
 - Use surrogate to replicate halon 1301 fire suppression behavior
 - Surrogate = HFC-125
 - Revise benchmark process

Begin characterizing fire threats

- Utilize instrumentation in the test article for characterization
- Benchmark process will likely be dropped in the future

MPSe Rev 03 → 04, Overview Minimizing the Effect of Injecting Fire Extinguishant

- Modify test process
 - Change from an iterative search to a proof-test
 - deliver agent in pre-determined quantity (amount x residence time)
 - predetermined quantity based on accepted bench-scale test
 - based on cup-burner assay
 - agent quantity = (factor-of-safety) x (cup-burner finding)
 - residence time = 0.5 sec
 - Requires preliminary testing to produce the agent distribution in the test article for 2 air flow conditions

MPSe Rev 03 → 04, Overview Minimizing the Effect of Injecting Fire Extinguishant

- Review agent measurement method
 - Conduct flow observations
 - smoke visualization (currently on-going)
 - SSWT & 2 aerodynamic models
 - nacelle fire simulator (NFS)
 - gas distribution behavior in the NFS
 - Revise measurement methods
 - as needed...
 - based on indications from observations & published literature

MPSe Rev 03 → 04, Status Original Schedule

MPSe Rev 03 → 04, Status Current Status

- Flow observations near-complete
 - Task group telephone conference call expected shortly
 - discuss flow observations
 - late May/early June
- Remaining tasks are pending

Flow visualization, SSWT Activity Overview

• Utilizing SSWT to visualize wake regions

- Wake regions are related to flame-holders in the NFS
- Will use indications for placing gas sample points in the NFS

• SSWT details

- Suction tunnel
 - driven by 0-90 VDC motor
 - speeds up to 50 ft/sec (15.2 m/sec)
- Working section 4 x 4 x 7.5 inches (102 x 102 x 191 mm)
- Two aerodynamic models; tube array & "fuel pan"
- Delivering smoke to visualize flow near models
- Red laser sheet illuminates horizontal planes

Flow visualization, SSWT Activity Imagery - SSWT, fuel pan model

Flow visualization, SSWT Activity Imagery - SSWT, working section/close-up

IASFP Working Group Meeting, Koeln, 19-20May2009

aser sheet generator (laser on)

Federal Aviation Administration

Flow visualization, SSWT Activity Imagery - SSWT, set for work

Flow visualization, SSWT Activity Tests 2009506-18 & -19, smoke visualizations

Common characteristics

- Air temperature = $\sim 64^{\circ}F$ (18° C)
- Calculated air speed = \sim 47 ft/sec (14.3 m/s)
- Aerodynamic model = tube array

• Test 2009506-18 (outside wake region)

- Smoke delivered through the SSWT inlet forward of model
- Smoke traversed from right to left (viewed here as top to bottom)

• Test 2009506-19 (inside wake region)

- Smoke delivered to the wake of the model
- 3 horizontal planes viewed

Flow visualization, SSWT Activity Imagery - SSWT, smoke/inlet delivery, "clear" air/right side

IASFP Working Group Meeting, Koeln, Germany 19-20May2009

Federal Aviation Administration

Flow visualization, SSWT Activity Imagery - SSWT, smoke/inlet delivery, right model boundary

Flow visualization, SSWT Activity Imagery - SSWT, smoke/inlet delivery, centered

Flow visualization, SSWT Activity Imagery - SSWT, smoke/inlet delivery, left model boundary

Flow visualization, SSWT Activity Imagery - SSWT, smoke/inlet delivery, "clear" air/left side

Flow visualization, SSWT Activity Imagery - SSWT, smoke/wake delivery

Flow visualization, SSWT Activity Imagery - SSWT, smoke/wake delivery

Flow visualization, SSWT Activity Imagery - SSWT, smoke/wake smoke delivery

• Acronyms

MPSe = Minimum Performance Standard for Civil Aircraft Engine Nacelle & APU Compartments APU = Auxiliary Power Unit SSWT = small-scale wind tunnel NFS = nacelle fire simulator, located at the FAA WJ Hughes Technical Center rev = revision fwd = forward

