# Lithium Battery Testing Update

Presented to: Systems Fire Working Group By: Harry Webster Date: May 18, 2010



Federal Aviation Administration

## **Lithium Battery Test Program**

- Evaluate the feasibility of using water mist to extinguish both primary and rechargeable lithium battery fires.
- Evaluate the ability of currently available shipping containers to withstand an internal lithium-ion or lithium primary battery fire.
  - Fire containment
  - Molten lithium
  - Pressure containment
- Evaluate the ability of currently available shipping containers to protect a shipment of lithium batteries from an external fire.



## **Lithium Battery Test Program**

- Bulk shipment packaging upgrades
  - Evaluate the effectiveness of improved separation materials in preventing fire propagation between cells

#### Large scale lithium-ion fire tests

- Small scale tests have shown the effectiveness of Halon 1301 in controlling lithium-ion fires
- The effectiveness of Halon 1301 in large scale cargo compartment tests with mixed fire loading and up to 1000 18650 cells will be evaluated



# Water Mist Results

- Initial tests with relatively high volume water spray appears to be effective on both primary and ion batteries
  - Lithium-ion cells
    - Extinguishes electrolyte fire
    - Cools cells
    - Stops propagation between cells
  - Lithium primary cells
    - Water reacts with molten lithium
    - Cools cells
    - Stops propagation between cells



# **Shipping Container Tests**

- Two types of robust shipping containers have been procured.
  - 5 gallon sized steel pail, with sealed crimped lid
  - 30 gallon sized steel drum with removable lid and locking ring
- Preliminary containment tests
  - Small number of cells (2-5)
  - Thermal runaway induced by 100 watt cartridge heater



## Shipping Container Tests-Preliminary Results

### • Five gallon pail

- Two lithium-ion 18650 cells
  - Cells overheated and vented electrolyte
  - Electrolyte ignited
  - Pail contained the fire
  - Pail seal did not contain the pressure, released smoke around the perimeter of the lid
- Five CR2 lithium primary cells
  - Ignition of 1-2 cells blew lid 10-12 feet in the air
  - Remaining cells ejected from the container and continued to burn











## **Near Term Test Schedule**

### • Five gallon pail tests

- Increase number of 18650 cells

#### • Thirty gallon drum tests

- Lithium-ion cells (pending results of pail tests)
- Lithium-primary test
  - Begin with 5 CR2 cells

### Packaging material tests

- Replace cardboard dividers with thermal resistant materials (thin cargo liner, insulation blocking layer)
- Use 100 watt cartridge heater to initiate fire



## **Near Term Test Schedule**

#### • Full scale cargo tests

- Determine effectiveness of Halon 1301 in controlling a cargo fire with mixed fire loading and lithium-ion cells
  - 100 cells
  - 500 cells
  - 1000 cells
- Container tests
  - Measure temperature rise inside container when exposed to a suppressed cargo fire
  - Evaluate effectiveness of intumescent paint coatings



## Long Term Test Schedule

#### • Water Mist Tests

- Evaluate spray volume
- Droplet size
- Effectiveness of water spray in mixed fire loading

#### Develop specifications for lithium battery shipping container

- Internal fire containment
- Pressure containment / release
- External fire

