Extinguishment of Lithium Batteries

Federal Aviation Administration

Presented to: Systems Meeting

By: Thomas Maloney, FAA Fire Safety Date: 05-23-2013

Background

Growth in Lithium Battery Use

 The number of lithium-ion batteries made in the world grew from about 800 million in 2002 to about 4.4 billion in 2012. ^[3]

Fire Risk

 Many lithium ion cells have been known to overheat and create a potentially dangerous situation.

Extinguishing Agents

 Many extinguishing agents are suggested for use against lithium-ion battery fires but there is little data comparing the cooling effectiveness of various agents.

Introduction

Thermal Runaway

- A self reinforcing exothermic reaction resulting in very high temperature and pressure within the cell resulting in the release of flammable electrolyte or explosion.
- A cell in thermal runaway generates enough heat to cause adjacent cells to go into thermal runaway, propagating throughout the battery pack or shipment.

Extinguishing Agents

 Extinguishing agents that cool the cells will decrease the likelihood of propagation of thermal runaway.

Related Tests

• FAA

- Tests done at the FAA showed that water was effective at extinguishing burning electrolyte from lithium-ion cells as well as stopping the propagation of thermal runaway.
- Halon 1211 was effective in extinguishing burning electrolyte from lithium-ion cells, but was ineffective in stopping the propagation of thermal runaway.
- Halon 1301 was also effective in extinguishing burning electrolyte from lithium-ion cells, but was ineffective in stopping the propagation of thermal runaway.
- Ice was not effective at preventing thermal runaway when placed directly on a laptop keyboard.

Objective

 Perform experiments to compare the cooling effectiveness of various extinguishing agents.

Setup and Procedure

- A $\frac{1}{4}$ " aluminum plate had five $\frac{1}{16}$ " inch ungrounded thermocouples embedded.
- The aluminum was set on a hot-plate.
- When the hot-plate reached 260C it was turned off and the extinguishing agents were dispersed about an inch from the center thermocouple (shown below).

Setup and Procedure (continued)

- Extinguishing agents were poured onto the plate and poured from an extinguisher.
 - Poured: Water, Aqueous A-B-D Agent, Novec 1230, AF-31, AF-21
 - Sprayed: FM-200, FE-36, Purple-K, Halon 1211, Halotron I
- The temperature drop was determined by

$$T_d = T_i - \overline{T}_{100}$$

where: T_d = average temperature drop

 T_i = The temperature immediately before agent release

 \overline{T}_{100} = The average temperature for the 100 seconds following agent release

Results

Results (continued)

Water Aqu

Aqueous A- I B-D Agent

Novec 1230

FM-200

Halotron I FE-36 Purple-K AF-31 25% AF-21 (aqueous) (aqueous)

1211

Summary of Results

- Under these test conditions, the aqueous agents exhibited the highest cooling effectiveness.
- Increasing the volume of the aqueous agents resulted in higher temperature reductions.
- The non-aqueous agents exhibited little cooling capacity and showed minimal increase in effectiveness with greater volumes.

Future Work

- Demonstrate the effectiveness of each agent on a simulated laptop lithium-ion battery fire
 - Extinguish the electrolyte fire
 - Stop the propagation of thermal runaway
- Repeat with lithium metal cells

Questions?

Contact

- Thomas Maloney
- Office: 609-485-7542
- Thomas.ctr.Maloney@faa.gov

Citations

- [1] http://oxford.tab.co.uk/files/2013/03/laptop2.jpg
- [2] http://billpstudios.blogspot.com/2006/08/dell-batteries-and-fire-safety.html
- [3] http://www.reuters.com/article/2013/04/12/us-usa-batteries-technologyidUSBRE93A0SQ20130412

