

Federal Aviation Administration

Passive Fire Protection for Lithium Battery Shipments

Presented to: Systems Meeting

By: Thomas Maloney, FAA Fire Safety Date: 05-23-2013

Background

Dubai Accident (2010)

- The heat from an onboard fire created slack in the aircraft control cables. ^[3]
- The fire created smoke which blocked the view of aircraft controls. ^[3]

• UPS DC-8 (2006)

- Lithium batteries may not have been the initial source of fire but contributed upon ignition. [1]

Other incidents

 Approximately 63 other Lithium and Lithium-ion cell related aviation incidents from 1991 to 2012 ^[4]

Background (Cell Packaging)

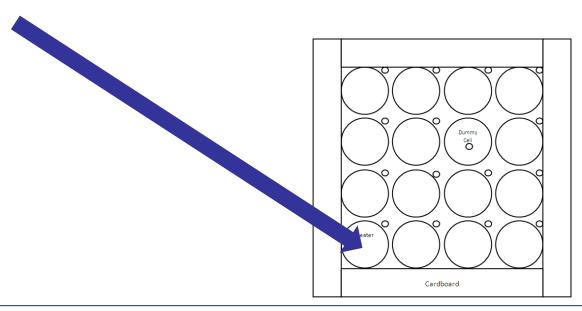
Typical 18650 cell packages

Related Tests

- Fire Protection Research Foundation
 - Provided a detailed report of battery chemistry and technology [5]
- FAA
 - Showed the usefulness of various materials to replace cardboard in cell packaging.
 - Cardboard with intumescent paint.
 - Aluminum foil instead of cardboard.
 - Composite sheets instead of cardboard.
 - Work was done that demonstrated the dependence of cell propagation on state of charge.
 - An Oxygen generator overpack box was tested with lithium primary cells
 - Standard taping: Box lid failed exposing flames.
 - Wire reinforced taping: The staples on the side of the box failed due to pressure.
 - Wire reinforced taping with pressure relief vent: Flame exited from vent.

Other related tests

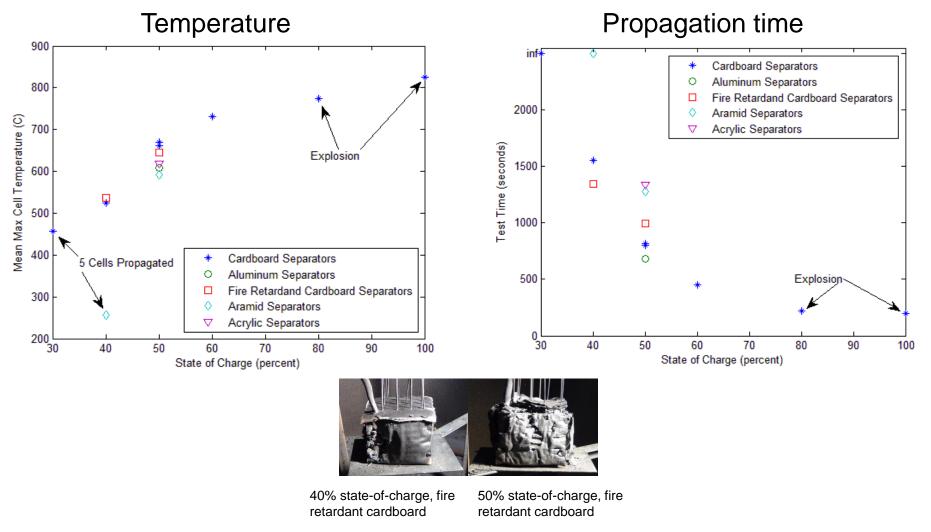
 Calorimeter tests have been done to determine the heat release of cells in thermal runaway.


Objective

- Perform experiments to better understand the effect of variation in cell packaging and cell state of charge.
 - Variation of cell "state-of-charge".
 - Variation in shipment packaging

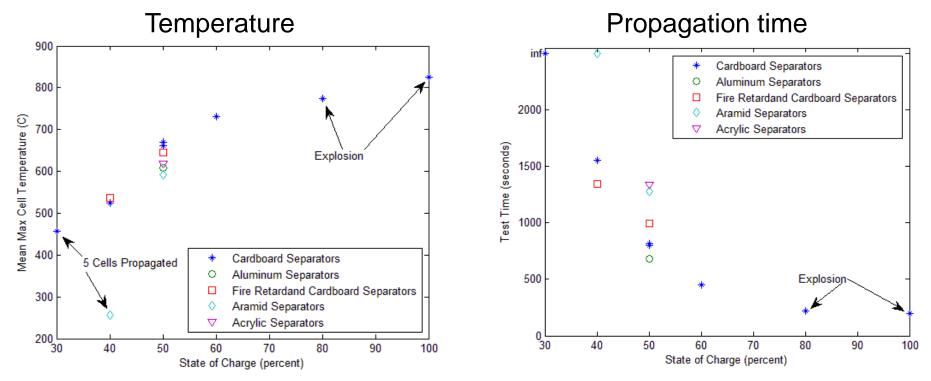
Test Setup (18650 Lithium Ion Cells)

- 16 cell (4 cell x 4 cell) boxes were made from cardboard.
- One cell in the array was an aluminum cylinder to be used to approximate heat flow into a cell.
- The cells had a 2600mah capacity.
- Each cell location had a thermocouple for data collection.
- A 100 Watt heater was used to initiate the propagation.


Tests (Lithium-ion)

- Baseline repeatability tests were performed at 50% state-ofcharge with typical cardboard cell separators.
- Substitute cell separators.
 - Aluminum sheet metal
 - Fire retardant cardboard
 - Thermoplastics
- Other test: 35 gram Plastic bag of water above the cells (5% of package weight)

State of Charge	Cardboard Separators (as	Aluminum Separators	Fire Retardant Cardboard	Aramid Separators	Acrylic	Water Pack Above the Cells
Charge	shipped)	Separators	Cardboard	Separators		the cens
30%						
40%						
50%	x2 (repeatability)					
60%						
80%						
100%						

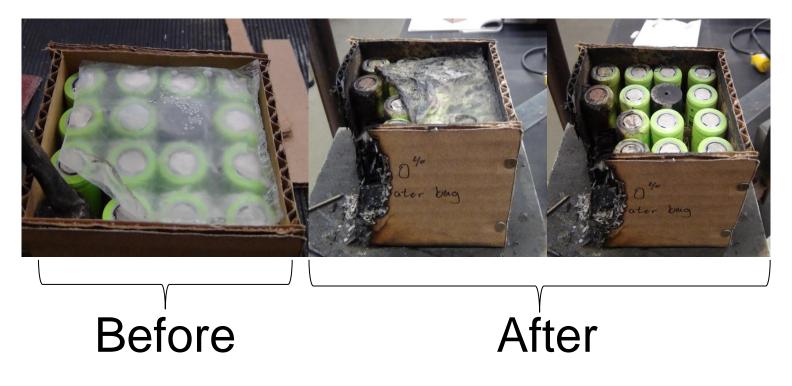


Lithium-ion Results (State-of-Charge)

Lithium-ion Results (Material Variation)

•Aluminum: At 50% SOC, propagation took 180% longer to initiate but caused the cells to burn 15% faster once initiated.

•Fire retardant cardboard: Relatively small effect on propagation.


•Aramid: At 50% SOC, propagation took 120% longer and the time for all cells to propagate took 160% longer.

•Acrylic: At 50% SOC, propagation took 120% longer and the time for all cells to propagate took 165% longer.

Lithium-ion Results (water pouch)

Water Pouch Above Cells

•Water stopped propagation (no temperature data)

Additional Observation (Lithium-ion)

 Explosions separated packaging and sometimes stopped propagation.

Summary of Results (Lithium-ion)

- The tendency for cells to propagation is highly dependent on the state-of-charge of the cell.
- Aluminum, acrylic, and aramid are effective at delaying the onset of propagation.
- Acrylic, and aramid are effective at lengthening the propagation time.
- Water is effective at absorbing energy and preventing propagation.
- When a cell explodes it may break apart the cell package and decrease the likelihood of propagation.

Future Tests

- Perform cardboard (as shipped) tests with another Lithium-ion chemistry
- Once conditions that prevent cell propagation are determined they are to be verified with a full box test.
- Perform tests with lithium primary cells.

Questions or Suggestions?

Contact

- Thomas Maloney
- Office: 609-485-7542
- Thomas.ctr.Maloney@faa.gov

Citations

- [1] Thurber, Matt. "Cargo Carriage of Lithium Batteries Suspected in Some Accidents." *AlNonline*. Aviation International News, Feb. 2012. Web. 01 Nov. 2012. http://www.ainonline.com/aviation-news/aviation-international-news/2012-02-01/cargo-carriage-lithium-batteries-suspected-some-accidents.
- [2] Lowy, Joan. "Report: Lithium Batteries on Crashed UPS Plane." Salt Lake City and Utah Breaking News, Sports, Entertainment and News Headlines. Associated Press, 3 Apr. 2011. Web. 01 Nov. 2012. ">http://www.deseretnews.com/article/700124082/Report-Lithium-batteries-on-crashed-UPS-plane.html?pg=all>.
- [3] "Air Accident Investigation Interim Report." General Civil Aviation Authority, n.d. Web. 1 Nov. 2012.
 http://www.gcaa.gov.ae/en/ePublication/admin/iradmin/Lists/Incidents%20Investigation%20Reports/Attachments/16/2010-Interim%20Report%20B747-400F%20-%20N571UP%20-%20Rev%201.pdf>.
- [4] "BATTERIES & BATTERY-POWERED DEVICES." FAA Office of Security and Hazardous Materials Safety, n.d. Web. 1 Nov. 2012.
 http://www.faa.gov/about/office_org/headquarters_offices/ash/ash_programs/hazmat/aircarrier_info/media/Battery_incident_chart.pdf.
- [5] Exponent Failure Analysis Associates. "Lithium-Ion Batteries Hazard and Use Assessment." N.p., July 2011. Web. 1 Nov. 2012.
 http://www.nfpa.org/assets/files/pdf/research/rflithiumionbatterieshazard.pdf>.

