Passive Fire Protection for Lithium Battery Shipments

Federal Aviation Administration

Presented to: Systems Meeting By: Thomas Maloney, FAA Fire Safety Date: 05-15-2014

Background

- Lithium batteries have been the cause of fires in small personal electronic devices and larger "bulk" quantities and continue to grow in popularity and use.
 - Small-scale incidents
 - Approximately 64 cargo/baggage incidents have been recorded by the FAA since 1991. ^[3]
 - Incidents involving large quantities of cells
 - Batteries contributed to an accident in Dubai in 2010. [2]
 - An aircraft fire involving lithium batteries occurred in 2006. [1]
 - Numerous lithium-ion car fires have occurred.

Objective

- Vary the separation distance between each cell with standard cardboard packaging.
 - Determine how the separation distance effects propagation time.
 - Determine how the separation distance effects cell temperatures.

05-15-14

Previous Tests

- A variation of the state-of-charge of the Li-lon cells effected thermal runaway propagation.
 - With standard cardboard packaging, 18650 cells at 30% failed to propagate.
 - At higher states-of-charge, propagation time decreased and average temperatures increased.
- A variation in cell divider materials was shown to effect the propagation of cells.
 - Insulative packaging materials slowed thermal-runaway propagation rate and decreased the temperatures.
 - Conductive materials delayed the time to thermal runaway but decreased the propagation time.
- A packet of water above the cells stopped propagation.
- Explosions of cells stopped propagation.

Setup (packaging)

- Tests were conducted within a 64 ft³ chamber with a constant ambient air temperature.
- Tests were performed in battery boxes with a 16 cell capacity and a thermocouple on each cell.

 One of the 16 cells was replaced with a cartridge heater which was used to initiate thermal-runaway in the adjacent cells.

Passive Fire Protection for Lithium Battery Shipments

Tests Performed (packaging)

Passive Fire Protection for Lithium Battery Shipments

05-15-14

Results

•Larger separation distances were not very effective at reducing cell temperatures.

•Separation distance did however have a significant impact on the rate of propagation.

Passive Fire Protection for Lithium Battery Shipments

Summary

- Larger separation distances decreased the propagation rate.
 - Recent ICAO recommendations of 8 cells per package (greater separation distance) would increase the amount of time that a pilot has to react to a fire.
- Larger separation distances have little effect on the temperatures of the cells.
 - Maximum cell temperatures for lithium-ion cells are not "strongly" dependent on rate of heating.
 - Recent ICAO recommendations of 8 cells per package (greater separation distance) would not have much effect on the heat release per cell.

Passive Fire Protection for Lithium Battery Shipments

Questions?

Contact

- Thomas Maloney
- Office: 609-485-7542
- Thomas.ctr.Maloney@faa.gov

05-15-14

Citations

- [1] Thurber, Matt. "Cargo Carriage of Lithium Batteries Suspected in Some Accidents." *AlNonline*. Aviation International News, Feb. 2012. Web. 01 Nov. 2012. ">http://www.ainonline.com/aviation-news/aviation-international-news/2012-02-01/cargo-carriage-lithium-batteries-suspected-some-accidents>">http://www.ainonline.com/aviation-news/aviation-international-news/2012-02-01/cargo-carriage-lithium-batteries-suspected-some-accidents>">http://www.ainonline.com/aviation-news/aviation-international-news/2012-02-01/cargo-carriage-lithium-batteries-suspected-some-accidents>">http://www.ainonline.com/aviation-news/aviation-news/aviation-international-news/2012-02-01/cargo-carriage-lithium-batteries-suspected-some-accidents>">http://www.ainonline.com/aviation-news/aviation-news/aviation-international-news/2012-02-01/cargo-carriage-lithium-batteries-suspected-some-accidents>">http://www.ainonline.com/aviation-news/aviation-news/aviation-international-news/2012-02-01/cargo-carriage-lithium-batteries-suspected-some-accidents>">http://www.ainonline.com/aviation-news/aviation-news/aviation-news/aviation-news/aviation-news/">http://www.ainonline.com/aviation-news/aviation-news/aviation-news/
- [2] "Air Accident Investigation Interim Report." General Civil Aviation Authority, n.d. Web. 1 Nov. 2012.
 http://www.gcaa.gov.ae/en/ePublication/admin/iradmin/Lists/Incidents%20Investigation%20Reports/Attachments/16/2010-Interim%20Report%20B747-400F%20-%20N571UP%20-%20Rev%201.pdf>.
- [3] "BATTERIES & BATTERY-POWERED DEVICES." FAA Office of Security and Hazardous Materials Safety, n.d. Web. 1 Nov. 2012.
 http://www.faa.gov/about/office_org/headquarters_offices/ash/ash_programs/hazmat/aircarrier_info/media/Battery_incident_chart.pdf.

