International Aircraft Systems Fire Protection Working Group Meeting Dresden, Germany, May 12-13, 2015

Fire Hazards of Lithium Ion Batteries

Richard E. Lyon, Richard N. Walters, Sean Crowley, and *James G. Quintiere

FEDERAL AVIATION ADMINISTRATION Aviation Research Division William J. Hughes Technical Center Atlantic City International Airport, NJ 08405

*Department of Fire Protection Engineering, University of Maryland, College Park

WEB: <u>www.fire.tc.faa.gov</u> E-MAIL: richard.e.lyon@faa.gov

Objective: Measure Fire Hazards of LIBs

Passenger electronics

Typical packaging

Causes of Battery Failure

Thermal

- Separator melts due to high temperature causing internal short circuit that releases heat.
- Contents mix, react and thermally decompose.
- **Electrical**
 - Overcharge
 - Rapid discharge
- Mechanical
 - Physical damage (puncture)
 - Manufacturing defect or contaminant

____ < 1 second →

All lead to auto-accelerating heat generation and rapid temperature increase (Thermal Runaway) leading to fire and/or explosion

18650 Rechargeable Cells (≈ 44 grams each)

Electrical Properties of Tested Cells

Maximum Capacity,Q _{max} (A-s)		Cell Potential, E (V)		-∆G, εQ _{max} (kJ/cell)
Rated	<u>Actual</u>	<u>Nominal</u>	<u>Max.</u>	
11,700	11,200	3.6	4.1	41
9,400	8,300	3.7	4.1	31
5,400	5,000	3.7	4.1	19
18,000	3,600	3.7	4.0	13
	Maxi Capaci (A <u>Rated</u> 11,700 9,400 5,400 18,000	Maximum Capacity, Qmax Rated Actual 11,700 11,200 9,400 8,300 5,400 5,000 18,000 3,600	Maximum Cell Pote Capacity, Q_{max} Cell Pote (A-s) \mathcal{E} (V Rated Actual Nominal 11,700 11,200 3.6 9,400 8,300 3.7 5,400 5,000 3.7 18,000 3,600 3.7	Maximum Capacity, Q_{max} (A-s)Cell Potential, $\mathcal{E}(V)$ RatedActualNominalMax.11,70011,2003.64.19,4008,3003.74.15,4005,0003.74.118,0003,6003.74.0

Chemical Energy Available to Do Useful Work (Free Energy), $\Delta G = -\epsilon Q$

State-of-Charge, $SOC = Q/Q_{max}$

Experimental Methods: Cell Charging

- Charge / Discharge 4 cells simultaneously
- Record: charge / discharge capacity
- Programmable for different states of charge

Methods: Hazard Measurements

Energetics of Cell Failure ASTM D 5865-14, Standard Test Method for Gross Calorific Value of Coal and Coke

> Thermal Effects of Cell Failure **Purpose-Built Thermal Capacitance** (Slug) Calorimeter

Fire Behavior of Lithium Cells

(ASTM E 1354, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter)

Bomb Calorimeter (ASTM D 5865)

- Parr Instruments Model 1341 Plain Jacket Oxygen Bomb Calorimeter
- Resistance heating to force thermal runaway of LIBs
- Nitrogen blanket (1 Atm) to prevent oxidation of contents after failure
- Temperature, voltage and current logged for all tests

Bomb and other components for 18650 battery tests

Experimental Setup

Thermodynamics of Cell Failure

Depends on cell chemistry

 $\Delta U_{Total} \approx \Delta U_{rxn} + \varepsilon Q$

Total energy released at cell failure (*measured in bomb*)

Electrochemical (Free) energy release
(Calculable from cell potential ε(V) and charge Q (A-s))

Energy released by mixing, chemical reaction and thermal decomposition of cell components.

Analysis of Bomb Calorimeter Data

Energetics of Individual Cell Failure

Electrochemical Free Energy, EQ (kJ/cell)

State-of-Charge is Not a Good Predictor of Energetics for Different Chemistries and Cell Potentials

Li-Ion 18650 Batteries - Post Test

Gravimetric Analysis for Volatile Yield

- Bomb weighed before and after venting to atmosphere to determine volatile yield
- Volatiles are combustible
- Yield $\propto \epsilon Q$

Electrochemical (Free) Energy, ϵQ (kJ/cell)

Infrared Spectra of Gaseous Decomposition Products

Thermal Effects of Cell Failure

J.G. Quintiere & S.B. Crowley, Thermal Dynamics of 18650 Li-ion Batteries, The Seventh Triennial International Fire & Cabin Safety Research Conference, Philadelphia, PA, 2013.

Adiabatic (Surface) Temperature Rise

Fire Calorimeter Testing of Lithium Cells

Special holder designed to prevent rocketing of cell at failure

Standard ASTM E 1354 Operation

Elapsed Time, seconds

• Effective Length of 18650, $\overline{L} = \sqrt{(18mm)(65mm)} = 34mm$

• Constant linear fire growth rate,
$$L'_0 = \frac{\overline{L}}{\tau} = \frac{\overline{L}^2}{mc/\kappa} = 3x10^{-4} m/s$$

• Heat Release in Flaming Combustion, $q_v = 10^9 \text{ J/m}^3$

$$HRR(t) = q_{v} \frac{dV}{dt} = q_{v} \frac{dL(t)^{3}}{dt} = 3q_{v} (L_{0}')^{3} t^{2}$$

Model Versus Full Scale Test Data

Full-Scale Test (After)

<u>State-of-charge</u> is a poor predictor of fire hazard for different batteries and cell chemistries.

<u>Total energy</u> at failure of Li Ion cells/batteries (LIB), ΔU_{total} is almost twice the stored electrochemical energy ϵQ for the 18650 cell chemistries of this study.