Forced-flow Fire Testing with "cold"-soaked FK-5-1-12, Final Results

Presented to: International Aircraft Systems Fire Protection Working Group

By:

Doug Ingerson, Engineer Federal Aviation Administration WJ Hughes Technical Center Fire Safety Team Atlantic City Int'l Airport, NJ USA tel : 609-485-4945 email : douglas.a.ingerson@faa.gov

Date: 16Nov2011

Federal Aviation Administration

Presentation Overview Major Discussion Points

- Purposes
- Test Conditions and Constraints
- Outcomes
- Interesting Observations
- Appendix Materials

References within this presentation to businesses, their services and/or products does not constitute endorsement.

Purposes

- Challenge FK-5-1-12's fire extinguishment performance in the nacelle fire simulator (NFS) for some "cold" conditions
- Observe the fire extinguishment behavior
 - based upon an acceptable firex agent distribution in the NFS at "high" ventilation¹
 - observe the behavior when the firex agent is :
 - "cold"-soaked
 - injected into a "cold"-walled compartment
 - experiencing a "cool" (ambient) air flow

1 Reference MPSe revisions 3 & 4 and past presentations regarding FAA nacelle halon replacement activity with FK-5-1-12

Test Conditions & Constraints

- Varied conditions, as needed, for :
 - NFS ventilation stream : mass flow rate, temperature
 - partial NFS boundary : temperature
 - firex agent : mass/pressure/temperature, injection configuration
 - fire threat : spray or pool
- Demonstrated negligible flame extinction effects other than firex agent concentration; N₂ discharged from largest bottle through least restrictive plumbing
- Sole persistent ignition threat was spray fire's hot surface

- -= test type (firex agent distribution, extinguishing/spray, extinguishing/pool)
- -----NFS wall temperature (cold, ambient, hot)
- ——fire extinguished ? (not applicable, no, yes)

Simplified

of

Representation

Graphical

est

Ξ

þ

Outcomes

め

Conditions

Test

- $-\Box-$ firex agent storage temperature (cold, ambient, hot)

IASFP Working Group Meeting, Atlantic City, NJ, USA 16-17Nov2011

5

IASFP Working Group Meeting, Atlantic City, NJ, USA 16-17Nov2011

Verage

of

Representation

Graphical

Federal Aviation Administration

6

Test Conditions & Constraints

- Established firex configuration for NFS "high" ventilation
 - met intent of MPSe rev03 outcome for FK-5-1-12
 - 12 sample points simultaneously equal/exceed 6.1%v/v for ½ sec; sample points defined per MPSe rev04
 - accomplished for "high" ventilation condition from MPSe testing; ~1.2 kg/s @ 49 ℃
- Firex plumbing configuration intact throughout project
 - except a single 1-test alteration, injection plumbing
 - otherwise multiple 1-test variations, mass & pressure

IASFP Working Group Meeting, Atlantic City, NJ, USA 16-17Nov2011

of

istribution

olumetric

Outcomes

- No spray fires extinguished
- One of 2 pool fires extinguished
 - test conditions for extinguished pool fire
 - ambient NFS stream
 - cold NFS boundary
 - ambient firex agent
 - pool reignited & reestablished "stable" combustion

Interesting Observations

- Pool fire extinguishment observed during final test
 - visible record captures extinguishment and reignition
 - · flames on the pool's fuel surface extinguished
 - flames propagated forward from aft of fuel pan & reestablished on pool surface
 - no hot surfaces reasoned to exist aft of the pool
 - likely illustrated the ability of flames to move through compartments not fully protected

Interesting Observations

- Light Transmission
 - laser & filtered optical receiver forward of each fire threat
 - raw signal illustrated major events of the test
 - signal history/aerosol cloud not easily explained
 - injected "cold"-soaked agent likely :
 - produced liquid aerosol cloud (FK-5-1-12_{LIQUID})
 - condensed atmospheric moisture (H2O_{LIQUID})
 - "cold" interior NFS walls covered with frost (H2O_{SOLID})
 - at a minimum, the aerosol contained FK-5-1-12 $_{\rm LIQUID}, \ \rm H2O_{\rm LIQUID}, \ \rm \& \ \rm H2O_{\rm SOLID}$

16-17Nov2011

16-17Nov2011

Light Transmission

Acronyms, definitions, short-hand notations

aft = if referencing gas concentration sampling, aft ring is sta514 cross section APU = Auxiliary Power Unit

btl = bottle

dist. = distribution, as in firex agent distribution test

ext/pool = fire extinguishment test, firex agent discharged against the NFS pool fire threat ext/spray = fire extinguishment test, firex agent discharged against the NFS spray fire threat firex = fire extinguishing agent

frx = fire extinguishing agent

fwd = forward; if referencing gas concentration sampling, fwd ring is sta490 cross section

FK-5-1-12 = 3M Novec 1230

mid = middle; if referencing gas concentration sampling, mid ring is sta502 cross section

MPSe = Minimum Performance Standard for Halon Replacement in Civil Aircraft Engine Nacelle & APU Compartments

n/a = not applicable

NFS = nacelle fire simulator for the MPSe, located at the FAA WJ Hughes Technical Center

OD = outside diameter

rev = revision

sta = station number, longitudinal position in the NFS

TC = thermocouple

vent = ventilation

Appendix Materials

- Various slides included within capture details relating to this testing
- For additional reference, review presentation from the May 2011 International Aircraft Systems Fire Protection working group meeting

MODIFICATIONS - TEST SECTION TO PRODUCE "COLD" WALLS

Forced-flow Fire Testing, "cold"-soaked FK-5-1-12

MODIFICATIONS - TEST SECTION TO PRODUCE "COLD" WALLS

Forced-flow Fire Testing, "cold"-soaked FK-5-1-12

GAS ANALZYER SAMPL POINTS WITHIN THE NFS

NFS SPRAY FIRE THREAT

Forced-flow Fire Testing, "cold"-soaked FK-5-1-12

IASFP Working Group Meeting, Atlantic City, NJ, USA 16-17Nov2011

Federal Aviation Administration

MODIFICATIONS – ADDDITIONAL TELEMETRY IN THE TEST SECTION

Forced-flow Fire Testing, "cold"-soaked FK-5-1-12

COMPLIMENTED EXISTING TELEMETRY WITH ADDITIONAL SENSORS TO CAPTURE BEHAVIORS

- THERMOCOUPLES : CERTAIN WALL & FIRE EXTINGUISHER THERMAL BEHAVIORS
- HOT-WIRE ANEMOMETERS (HWAs) : RELATIVE FLOW-FIELD SPEED IN SELECT LOCATIONS
- LASER-EXCITED OPTICAL RECEIVER : RELATIVE AEROSOL DENSITIES IN SELECT LOCATIONS

MODIFICATIONS – ADDDITIONAL TELEMETRY IN THE TEST SECTION

Forced-flow Fire Testing, "cold"-soaked FK-5-1-12

THERMOCOUPLE, **INTERNAL NFS** DOOR SURFACE, "pinch"-mounted, sta445/10:30

PLUMBING ASSEMBLY USED TO SENSE INTERNAL **TEMPERATURE & PRESSURE**

TELEMETRY, FIREX BOTTLE (typical)

