Full-scale Demonstration Testing with a Solid Aerosol Fire Extinguishing Agent, Discussion Transitioning...

Presented to: International Aircraft Systems Fire Protection Working Group

By: on behalf of :

Doug Ingerson
Federal Aviation Administration
WJ Hughes Technical Center
Fire Safety Team
Atlantic City Int'l Airport, NJ USA
tel : 609-485-4945
email : douglas.a.ingerson@faa.gov

Date: 15Nov2012

Federal Aviation Administration

Presentation Overview ~ Major Discussion Points

Testing with a Solid Aerosol

- Purpose
- Test Conditions/Circumstances
- Various Views of the Nacelle Test Article
- Some Observations
- Outcomes
- Conclusions

Current Status, Engine Nacelle Halon Replacement Activity, FAATC

References within this presentation to businesses, their services and/or products does not constitute endorsement.

Full-scale Demonstration Testing, Solid Aerosol ~ Purpose

Purpose

- Boeing/Kidde interested in solid aerosol fire extinguishing (firex) agent for aircraft engine nacelle application
- Firex agent subjected to MPSHRe rev04⁽¹⁾ testing
 - product is manufactured by Kidde & known as KSA
 - -generic/"Part A" testing, 2010-2011
 - accomplished in FAATC generic nacelle fire simulator
 - industry established design criteria for "Part B" testing
 - high-fidelity/"Part B" demonstration testing, 2011-2012
 - invoked by the FAA due to notable dissimilarities between this candidate & the typical firex solution of halon 1301
 - parties agreed to use Pratt & Whitney JT9D on an FAA-owned Boeing 747SP

 $(1) MPSHRe\ revision\ 04,\ http://www.fire.tc.faa.gov/pdf/systems/MPSErev04_MPSeRev04doc-02submtd.pdf$

Full-scale Demonstration Testing, Solid Aerosol ~ Test Conditions/Circumstances

Test Conditions/Circumstances

- JT9D nacelle forcibly ventilated externally from atmosphere – air mass flow rate ≈ 0.5 kg/s (1 lbm/s)
 - ran engine to "heat" nacelle environment before pertinent tests
- Nacelle fire threat
 - simultaneously burning JP-8 spray & pool fires
 - JP-8 spray delivered @ ~180 mL/min @ 46°C (0.05 gpm @ 115°F)
 - JP-8 pool of 19.1 x 26.8 x ~1.3 cm deep (7.5 x 10.5 x ~0.5 in)
 - fires electrically ignited; igniters de-energized after ignition
 - looked for fire extinguishment, not reignition behavior
- Industry provided firex system & concentration analyzer
 sodium bicarbonate-based solid aerosol
 - optical system used to measure agent distribution

Full-scale Demonstration Testing, Solid Aerosol ~ Test Conditions/Circumstances

Test Conditions/Circumstances

- Additional comments
 - intent of nacelle firex protection changed during "build-up"
 - initial intent to represent design criteria throughout fire zone
 - final design simultaneously represented design criteria solely at both fire regions; 4 concentration sample points per region
 - ran 2 fire extinguishment tests 11Jul2012
 - 1^{ST} test ran with N_2 injection
 - verify fire threats/challenge of sufficient intensity
 - expected NO fire extinction
 - 2ND test ran with solid aerosol injection
 - represent design criteria & demonstrate fire extinguishment
 - expected fire extinguishment

Full-scale Demonstration Testing, Solid Aerosol ~ Test Conditions/Circumstances

Test Conditions/Circumstances

General/intended test time line

Imagery of these various details can be found in this presentation & in the appendix of this file. The appendix imagery has been previously presented & is not part of this presentation.

Various Views, Schematic Site Plan

Full-scale Demonstration Testing, Solid Aerosol ~ Some Observations, General Comments

Some Observations, General Comments

- Data is provided here for "high" level review; data :
 - is from the 2ND test of 11jul (test 201271106)
 - represents the test challenging the solid aerosol's design criteria
- Data is visual & numerical
 - related to the :
 - general nacelle area, thermal
 - spray fire region, visual & thermal
 - pool fire region, visual & thermal
 - the following slides are provided in an organized manner
 - grouped by region; general nacelle, fire region
 - leads with pertinent imagery for familiarization
 - follows with numerical data in graph format, as applicable

Full-scale Demonstration Testing, Solid Aerosol ~ Some Observations/Visual Behaviors

Some Observations, Visual Behaviors

- Fire behaviors were recorded by cameras viewing the pool & spray fire regions
- Camera details
 - housed in windowed/metal boxes ventilated from/to nacelle exterior
 - principally recording visible spectrum
 - captured at frame rate \approx 15 frames per second
- Other comments
 - images are shown which were taken from the digital video records
 - -8 images shown for each fire region, incrementing at ≈ 1.6 sec
 - images span the firex agent pulse, pre-discharge to post-migration
 - as solid aerosol injects, it creates a cloud that obscures visibility
 - looked for light to indicate whether fire remained or not

Full-scale Demonstration Testing, Solid Aerosol ~ Some Observations/Temperatures

Some Observations, Thermal Conditions

- Some temperature behaviors are included here
- Thermocouple descriptions
 - all type-K
 - all here are sampling the nacelle gas stream
 - the data here represents positions principally in the nacelle
 - several scattered about the nacelle (3 graphs)
 - -1 point sampling the inlet air entering the engine
 - 12 points in the nacelle
 - 8 points local to the spray fire (1 graph)
 - 8 points local to the pool fire (1 graph)

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

Thermocouple Behaviors, "Original" 12 Locations, 1-4

Thermocouple Behaviors, "Original" 12 Locations, 5-8

Thermocouple Behaviors, "Original" 12 Locations, 9-12

Various Views, Nacelle Spray Fire Threat, Concentration Sample Points & Video Camera Location

viewing outboard side of engine in spray fire region

Various Views, Thermocouple Locations, Spray Fire Threat

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

Federal Aviation Administration

Thermocouple Behaviors, Spray Fire

Full-scale Demonstration Testing, Solid Aerosol ~ Some Observations/Summary – Spray Fire Region

Some Observations, Summary/Spray Fire Region

- 1ST test/11Jul (test 201271103)
 - $-N_2$ injection did not extinguish the spray fire
 - parts of 2 door seals continued burning after fuel flow stopped
 - seals are located on cowl door's inner face near the spray fire
 - similar to fiberglass/"high-temperature" silicone gasket material
- 2ND test/11Jul (test 201271106)
 - region remained illuminated throughout the firex agent exposure
 - after the firex agent pulse passed, the spray fire was burning
 - seals continued burning after fuel flow stopped
 - thermal traces
 - indicates flames are pushed around during injection
 - average trend remained steady to increasing

Various Views, Nacelle Pool Fire Threat, Concentration Sample Points & Video Camera Location

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

Full-scale Demonstration Testing, Solid Aerosol

15:50:12

~ Some Observations/Pool Fire Visual Record Wed, Jul 11, 2012 15:56:04.921 00:09:46:17 Camera02 Camera02

CH. 00

Image 3

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

Federal Aviation

Administration

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

Federal Aviation Administration

Thermocouple Behaviors, Pool Fire

Full-scale Demonstration Testing, Solid Aerosol ~ Some Observations/Summary – Pool Fire Region

Some Observations, Summary/Pool Fire Region

- N_2 did not extinguish the pool fire in 1ST test/11Jul
- 2ND test/11Jul
 - region remained mostly illuminated during the firex agent pulse
 - analog video record captured interesting behavior (not shown here)
 - occurred 00:09:46 00:09:48 (elapsing timer)
 - flames are pushed inboard, rotated around engine core beyond inboard limit of view field, view field <u>briefly</u> (t < 0.23 sec) went dark, then light intensity obviously increased near 06:00/BDC
 - after the firex agent pulse passed, the pool fire was burning
 - thermal traces
 - indicated flames are pushed around during injection
 - average trend decreased briefly but regained steady-state

Full-scale Demonstration Testing, Solid Aerosol ~ Outcomes

Outcomes

- The challenge to the design criteria was reasonable.
 - occurred in a "real" engine nacelle environment
 - spray & pool fire threats were present
 - all added to create the spray & pool fire threats were similar in character to that already in the nacelle
- The firex system "protected" part of the nacelle fire zone.
- The firex agent distribution surrounded each fire region simultaneously while representing the design criteria.
- The spray & pool fires did not extinguish in either test.
- 2 cowl door seals near the spray fire continued burning after fuel flow stoppage.

Full-scale Demonstration Testing, Solid Aerosol ~ Outcomes/Next Steps

Outcomes/Next Steps

- Following 11Jul test outcome, industry/FAA discussion continued; opinions differed about the next steps.
- Given the test outcome, FAA & industry goals diverged.

 industry reasonably wants to understand the test outcome
 FAA support falters because progression to a recommendation for certification, the basis for support, is not possible in the near-term
- FAATC offered additional/constrained support.
 - focus to understand the test environment, not the candidate
 - any focus on the candidate taken as development work, the obligation of the industry team

Full-scale Demonstration Testing, Solid Aerosol ~ Outcomes/Next Steps

Outcomes/Next Steps

- FAATC offer of further 747SP support
 - work to better understand fire behaviors/intensities
 - assess the situation with something "familiar"; use halon 1301
 - represent 6%v/v for 0.5 sec across the same 8 sample points
 - firex system creation at industry expense
 - FAATC-imposed deadline
 - assess intensity via extinguishment; i.e. if not extinguished, threats too severe, else threats reasonably severe; react accordingly
- Given the difference here between FAA & industry constraints, industry declined the offer of this support.

Full-scale Demonstration Testing, Solid Aerosol ~ Conclusions

- Given no fire extinguishment subject to N₂ injection, the fire threats were considered sufficiently intense.
- Given no fire extinguishment when subject to the solid aerosol injection, the represented design criteria did not demonstrate fire extinguishment.
- The firex agent & its distribution measurement observably differ from history. Change in firex design rationale, acknowledging these differences, may alter outcome.
- Currently, the FAATC provides no further significant support regarding this solid aerosol. Industry action continues.
 - resuming FAA support remains possible, contingent upon the development of plausible knowledge
 - the form of any future support is not known at this time

Current Status

~ Engine Nacelle Halon Replacement Activity, FAATC

- No significant testing planned.
- Significant report creation planned.
 - MPSHRe report, to include :
 - test process development
 - work with :
 - HFC-125
 - $-CF_{3}I$
 - -2-BTP
 - FK-5-1-12
 - -KSA
 - MPSHRe rev03; given HFC-125 & CF₃I outcomes per rev03
 - MPSHRe rev04

- "cold" FK-5-1-12 technical note

End of Presentation

Acronyms, definitions, short-hand notations

approx = approximately BDC = bottom dead center FAA = United States Federal Aviation Administration FAATC = FAA W.J. Hughes Technical Center firex = fire extinguishing or fire extinguishing system FWD = forward MPSHRe = Minimum Performance Standard for Halon Replacement in Civil Aircraft Engine Nacelle & APU Compartments rev = revision

Appendix Imagery

Various Views, Nacelle Ventilation, Exhaust

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

Various Views, Nacelle Pool Fire Threat, Fuel Pan Details

- Fuel pan is made from 14 ga steel & approximately 191 x 267 x 64 x mm tall (7.5 x 10.5 x 2.5 in tall)
- Fuel puddle depth approximately 13 mm (0.5 in) & freeboard (dry lip) height approximately 25 mm (1 in)
- Base of fuel pan is hollow permitting water flow from a water jacket

Various Views, Nacelle Pool Fire Threat, General Site Orientation

VIEWING AFT/LOWER ENGINE AREA (from aft/outboard

VIEWING AFT/LOWER ENGINE AREA (from aft/inboard)

IASFP Working Group Meeting, Long Beach, CA, USA 14-15Nov2012

VIEWING AFT/LOWER ENGINE AREA (from mid/outboard)

