International Aircraft Systems Fire Protection Working Group Meeting

Updated Experimental Investigation of NexGen Burner

Nov. 14th, 2012

Fire Test Center, University of Cincinnati

Yi-Huan Kao, Samir B. Tambe, San-Mou Jeng

Outline

- Project Objective
- Conclusion of Previous Work
- Test Setup and Burner Configuration
- Sensitivity of Burner Calibration to:
 - Fuel Temp. (60°F~130°F)
 - Air Temp. (60°F~140°F)
- Fire Test Results: Effect of Air Temp.
- Conclusion and Recommendations

Project Objective:

- Develop the operating settings for NexGen burner for powerplant fire tests
 - NexGen burner should **simulate** previously FAA approved oil burners
 - NexGen burner should be **robust and repeatable**

Previous Approach:

- Sensitivity of burner calibration to burner settings (2011)
- Fire test results from NexGen burner operated at the same calibration setup (2011)
- Comparison of fire test results between NexGen and Gas burner (2012)
- Effect of burner orientation on Fire Test results (2012)

Current Approach:

- Sensitivity of burner calibration to fuel or air temperature
- Effect of air temperature on fire test results

Conclusion of Previous Work (1)

Sensitivity of Burner Calibration and Fire Test result to burner settings

➢NexGen burner calibration is much more sensitive to a change in the fuel flow rate as compared to a change in air flow rate.

900

850

800 – 200

240

280

Test Time (s)

320

360

400

Conclusion of Previous Work (2)

Sensitivity of Burner Calibration and Fire Test result to thermocouple size

Thermocouple size does affect the temperature calibration data, as well as the result of fire test.

- Smaller thermocouples read the higher measured temperature.
- Test sample tested with flame calibrated by smaller thermocouple survived longer.

Conclusion of Previous Work (3)

Comparison of NexGen Burner and Gas burner (Horizontal)

	Т	est Conditions	Calib	ration Data	Burnthrough Time	
	Fuel	Air	Temp. (F)	Heat Flux (BTU/ft^2-s)		
NexGen-1st	2.25		1919.8	9.5	11.5 min	
NexGen-2 nd	GPH	62.2 SCFM	1919.6	9.4	terminated	
Gas-1 st	0.45	4.95 (mixing)+	1914.9	8.8	≥20 min	
Gas-2 nd	SCFM	7.43(cooling) SCFM	1916.5	8.9	≥20 min	
*Ambient Temp.=70~80 F, w/o forced convection						

➤Gas burner does provide more favorable test condition at horizontal orientation, as compared to NexGen burner.

UNIVERS

Conclusion of Previous Works (4)

Effect of Burner Orientation on Fire Test Result

	Test Conditions				libration Data	Burnthrough Time
Test #	Fuel (GPH)	Air (SCFM)	Φ	Temp. (F)	Heat Flux (BTU/ft^2-s)	
0º-1st	2.25	67.6	0.76	1919.6	9.4	15m
0°-2nd	2.23	07.0	0.70	1919.8	9.4	Terminated
15º-1st	0.00	66.7	0.81	1922.4	10.3	10m40s
15°-2nd	2.30			1920.7	10.4	Terminated
30º-1st	2 55	66.7	0 07	1928.1	11.0	9m10s
30°-2nd	2.00	00.7	0.87	1930.0	11.1	9m30s
45°-1st	2.61	00.7	0.00	1928.6	11.4	10m
45°-2nd	2.01	00.7	0.09	1920.1	11.5	9m40s

*Ambient Temp.=70~80 F, w/o forced convection *\$\phi\$: equivalent ratio

➤The burnthrough time reduces as burner inclination angle is increased

Chichhad

Test Setup and Burner Configuration

Sensitivity of Fuel Temp.

T_fuel (F)		M_fuel (GPH)	Calib_Temp. (F)		Calib_H.F. (BTU/ ft^2-s)	
57~61	59		1954	-0.91%	10.53	-0.09%
89~94	92	2 54	1972	0.00%	10.45	- 0.85%
101~104	102	2.51	1980	0.41%	10.57	0.28%
124~125	125		1982	0.51%	10.61	0.66%
			1972 (Avg.)	÷	10.54 (Avg.)	÷
T_fu	el (F)	M_fuel (GPH)	Calib_Temp. (F)		Calib_H.F. (BTU/ ft^2-s)	
T_fu 57~61	el (F) 59	M_fuel (GPH)	Calib_Temp. (F) 2044	-0.68%	Calib_H.F. (BTU/ ft^2-s) 11.48	-1.59%
T_fu 57~61 89~94	el (F) <u>59</u> 92	M_fuel (GPH)	Calib_Temp. (F) 2044 2051	-0.68% -0.34%	Calib_H.F. (BTU/ ft^2-s) 11.48 11.80	-1.59% 1.16%
T_fu 57~61 <u>89~94</u> 101~104	el (F) 59 92 102	M_fuel (GPH) 2.78	Calib_Temp. (F) 2044 2051 2067	-0.68% -0.34% 0.44%	Calib_H.F. (BTU/ ft^2-s) 11.48 11.80 11.86	-1.59% <mark>1.16%</mark> 1.67%
T_fu 57~61 <u>89~94</u> 101~104 124~125	el (F) 59 92 102 125	M_fuel (GPH) 2.78	Calib_Temp. (F) 2044 2051 2067 2070	-0.68% -0.34% 0.44% 0.58%	Calib_H.F. (BTU/ ft^2-s) 11.48 11.80 11.86 11.52	-1.59% 1.16% 1.67% -1.24%

•P=60 psig (pressure setting at pressure regulator)

Sensitivity of Air Temp.

T_air (F)		M_fuel (GPH)	CaliTemp (F)		CaliH.F. (BTU/ ft^2-s)	
61~64	62		1918	-1.08%	10.35	-0.98%
85~90	88	2 54	1932	-0.36%	10.44	-0.12%
114~120	117	2.51	1943	0.21%	10.39	-0.60%
133~139	137		1963	1.24%	10.63	1.70%
			1939	+	10.45	+
T_ai	ir (F)	M_fuel (GPH)	CaliTemp (F)		CaliH.F. (BTU/ ft^2-s)	
T_ai 61~64	ir (F) <u>62</u>	M_fuel (GPH)	CaliTemp (F) 2020	-0.94%	CaliH.F. (BTU/ ft^2-s) 11.43	-2.14%
T_ai 61~64 85~90	ir (F) <u>62</u> <u>88</u>	M_fuel (GPH)	CaliTemp (F) 2020 2031	-0.94% -0.40%	CaliH.F. (BTU/ ft^2-s) 11.43 11.73	-2.14% 0.43%
T_ai 61~64 <mark>85~90</mark> 114~120	ir (F) <u>62</u> <u>88</u> 117	M_fuel (GPH) 2.78	CaliTemp (F) 2020 2031 2047	-0.94% -0.40% 0.38%	CaliH.F. (BTU/ ft^2-s) 11.43 11.73 11.64	-2.14% 0.43% -0.34%
T_ai 61~64 85~90 114~120 133~139	ir (F) 62 88 117 137	M_fuel (GPH) 2.78	CaliTemp (F) 2020 2031 2047 2059	-0.94% -0.40% 0.38% 0.97%	CaliH.F. (BTU/ ft^2-s) 11.43 11.73 11.64 11.92	-2.14% 0.43% -0.34% 2.05%

•P=60 psig (pressure setting at pressure regulator)

Fire Test Results v.s. Air Temp.

		Fuel (GPH)	P, Air (psig)	calibrati	huweth would h	
	Air temp. (F)			avg. temp. (F)	heat flux (BTU/ft^2-s)	time
cold air -1st	82	2.62	60	2013	11.46	10m10s
cold air -2nd	78	2.62	60	2008	11.37	10m0s
hot air -1st	134	2.62	60	2009	11.52	9m0s
hot air -2nd	140	2.62	60	2021	11.58	8m30s

≻10% increase in (absolute) air temperature reduced burnthrough time by 80s (300K->330K, 80°F->135°F)

unchanged dP + T increasing from 300K to 330K =air mass flow rate drops 5%

300K=27°C=80°F 330K=57°C=134°F

Theory behind Experimental Results (2)

>5% of air mass flow rate drop could shift the equivalent ratio from 0.9 to 0.95, and increase the adiabatic temperature up to 100° F.

Even the NexGen burner is an opened-flame system, the real flame temperature still could be expected to increase a non-neglected value.

Conclusions

Fuel and air temperature do not have a significant impact on burner calibration

✓ Under the range of investigated fuel and air temperature, all of data are within 2% difference of mean value.

For the same pressure setting, air temperature has a significant impact on the fire test result

 \checkmark For a constant pressure setting on the sonic choke, air flow rate decreases with increasing temperature

✓The decrease in air flow rate results in an increase in the real flame temperature

✓ Burnthrough time is inversely proportional to the air temperature, i.e. higher air temperature results in the shorter burnthrough time

Recommendation

• Fire test houses should report and monitor the air temperature during fire testing to minimize the discrepancy of fire test results. • For the sonic choke, air mass flow rate is proportional to P/\sqrt{T} , so this quantity needs to be monitored

Acknowledgement

The presented work was supported by a grant from the FAA technical center.

