Lithium Ion Thermal Runaway Less than 2 Wh Lithium Ion Batteries

Presented to: International Aircraft Systems Fire Protection Working Group

By: Matthew Karp

Date: November 1, 2017

Federal Aviation Administration

Scope of Test

•RTCA SC-225 committee working on developing document DO-311A

•Document contains Minimum Operational Performance Standards (MOPS) for rechargeable lithium battery systems

Proposed to exempt battery cells that are < 2Wh from testing standards
provided they are certified to existing UL and IEC standards

•Comments were received that the exemption level should be raised to as high as 5 Wh

•Tests were conducted to determine if the exemption level should be raised

Scope of Test

- •Tests were conducted with lithium ion rechargeable 3.7V 500mAh (1.85Wh) polymer pouch cells and button cells at 100% SOC
- •The cells were forced into thermal runaway using the overheat method at 20°C/min
- Tests were conducted in a 21.7L pressure vessel where a pressure transducer and thermocouple were used to quantify the gas release from each lithium battery cell
- The gases were collected and analyzed for percent hydrogen, carbon monoxide, carbon dioxide, oxygen, and total hydrocarbon content (THC)
- •The maximum temperature rise and peak pressure rise were annotated

Test Equipment

- •Experiments were conducted in a 21.7 liter stainless steel pressure vessel
- •Gas chromatography (GC) with thermal conductivity detector (TCD) to measure H2
- •Paramagnetic sensor (pO2) to measure CO/O2
- •Non-dispersive infrared radiation to measure CO2
- •Flame ionization detector (FID) to measure total hydrocarbon content (THC)

Test Apparatus

Test Procedure

- •The pressure vessel is vacuumed to less than 0.1 psia
- •The pressure vessel is filled to 14.7 psia with nitrogen gas
 - •Nitrogen gas is used because of its inert properties and to prevent interference with the gas analyzers
- •The battery is forced into thermal runaway by overheating and the vent gases are released
- •More nitrogen is added to the pressure vessel until the pressure reaches 18 psia, this creates a positive pressure to feed into gas analyzers
- •The samples are analyzed for gas composition

Test Procedure

- •The battery cells were placed on top of a flexible heater
- •Heated at 20°C/min until thermal runaway is induced
 - •The temperature heating rate was controlled by a Proportional-Integral-Derivative (PID) controller
- •Temperature was measured at the side of the pouch cell and on top of the button cell

Pouch Thermocouple Location

- •Thermocouples were placed at two separate locations
- •The locations
 - •On top
 - •On the side

Pouch Maximum Temperature

- •The maximum temperature at the side of the pouch cell is hotter than on top of the pouch cell
 - •Vent gas vents out of the sides
- •The average maximum temperature are:
 - •Side 621±25°C
 - •Top 412±24°C
- •The average thermal runaway onset temperature is 135±13°C

Pouch Vent Gas Volume

•The average vent gas volume is 0.76±0.03L

Pouch Pressure Rise

•The pressure is measured inside of a 21.7L pressure vessel.

•Note: The measured pressure is inversely proportional to the pressure vessels volume.

•The average maximum pressure is

•17.1±0.1psia

•15.1±0.6%

•The average percent pressure rise is

Pouch Cell Gas Constituents

- •The gas concentrations used for the calculation of the lower flammability limit (LFL) were measured and averaged. The results are tabulated
- •The LFL can be calculated using Le Chatelier's Mixing Rule
- •The calculated LFL is 8.5%vol battery gas in air

Gas Specie	Averaged Gas	LFL, %vol
	Concentration, %vol	
carbon dioxide	25.3±0.7	0
carbon monoxide	20.0±6.2	12.5
ethane	0.6±0.1	3.00
ethylene	7.3±0.8	3.10
hydrogen	24.0±2.5	4.95
methane	3.1±0.3	5.30
propane	0.2±0.02	2.10
propylene	1.6±0.4	2.40
oxygen	6.0±2.7	NA
THC	18.7±1.0	NA

Button Thermocouple Location

•The thermocouple was places on top of the button cell and wrapped with fiberglass tape to insure good contact

Button Maximum Temperature

- •The two tested button cells had drastically different maximum temperature
- Variations in thermal runaway reactions has also been observed in 18650 cells
- •This is often observed with a delay in thermal runaway reaction as represented by the black vertical lines
- •The delayed reaction allows time for the electrolyte to evaporate away from the cell

Temperature Rise

Button Cell Significant Values

Button Cell Gas Constituents

- •The gas concentrations used for the calculation of the lower flammability limit (LFL) were measured and averaged. The results are tabulated
- •The LFL can be calculated using Le Chatelier's Mixing Rule
- •The calculated LFL is 8.2%vol battery gas in air

Gas Specie	Averaged Gas	LFL, %vol
	Concentration, %vol	
carbon dioxide	23.4±0.8	0
carbon monoxide	25.0±3.7	12.5
ethane	0.5±0.04	3.00
ethylene	8.4±0.4	3.10
hydrogen	23.8±1.9	4.95
methane	2.7±0.2	5.30
propane	0.1±0.01	2.10
propylene	2.0±0.2	2.40
oxygen	5.1±3.0	NA
THC	17.9±1.7	NA

Summary <2Wh Lithium Ion

	Pouch Cell	Button Cell	Total Average	9.25 Wh Pouch
				Cell 30% SOC
Carbon Dioxide	25.3±0.7%	23.4±0.8%	24.5±1.0%	41.2%
Carbon Monoxide	20.0±6.2%	25.0±3.7%	22.0±4.3%	3.82%
Hydrogen	24±2.5%	23.8±1.9%	23.9±1.5%	16.98%
Percent Pressure Rise	15.1±1.13%	17.0±2.3%	15.9±1.3%	20.4%
Maximum Pressure	17.1±0.1%	17.4±0.3psia	17.2±0.2psia	NA
Off Gas Volume	0.76±0.03L	0.79±0.06L	0.77±0.04L	0.92L
Maximum Temperature	621±50°C	508±238°C	576±97°C	404°C
Calculated LFL	8.5%	8.2%	NA	9.1%

Conclusion

•While there may be examples of safer cells of higher capacity, there are also cells at or near the 2 Wh level that could pose a threat to aircraft safety

•Based on the testing, the committee decided to maintain the 2Whr limit and not to extend the exemption level.

References

[1] Coward, Hubert Frank, and George William Jones. *Limits of flammability of gases and vapors*. No. BM-BULL-503. Bureau of Mines Washington DC, 1952.

Contact Information

- Matthew Karp
- Matthew.Karp@FAA.gov

