Certification of False Alarm Resistant Cargo Smoke Detectors

Presented to: International Aircraft Systems Fire Protection Working Group
By: Robert I. Ochs
Date: November 1, 2017
If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following must be met for each cargo or baggage compartment with those provisions:

- (a) The detection system must provide a visual indication to the flight crew within one minute after the start of a fire.
- (b) The system must be capable of detecting a fire at a temperature significantly below that at which the structural integrity of the airplane is substantially decreased.
- (c) There must be means to allow the crew to check in flight, the functioning of each fire detector circuit.
- (d) The effectiveness of the detection system must be shown for all approved operating configurations and conditions.
AC 25-9A, 1/6/1994

- Provides guidelines for the conduct of certification tests relating to smoke detection, penetration, and evacuation.
 - Provides a list of acceptable smoke generators for smoke detection tests
 - Emphasizes that only a small amount of smoke should be generated to simulate a smoldering fire
TSO-C1e describes Minimum Performance Standards (MPS) for cargo compartment fire detection instruments

- Requires new models of cargo compartment fire detection instruments meet MPS qualification requirements in SAE Aerospace Standard AS8036
• SAE AS8036 includes criteria for resisting false alarms from various sources

• Section 6. False Alarm Signals
 – Air Velocity
 – Dust
 – Insecticide
 – Ambient Light
 – Combined Temperature, Pressure and Humidity Cycling
Problem

• AS8036 false alarm conditions are similar to theatrical smoke aerosols
 – Detectors that are designed to not alarm for insecticide aerosols may also not alarm for theatrical smoke, thus proving difficult to certify with current smoke generators
A task group was formed to discuss this issue and work together to develop smoke certification procedures that will cause all detectors to alarm, even those that are false-alarm resistant.

Task group met several times either in person or on Webex.

Ideal Smoke Generator Characteristics
- Capable of producing aerosols in the 200-300nm size range with refractive index of 1.4
- More consistent and repeatable, perhaps with control of mass flow rate of liquid
- It was asked of the group to provide what type/brand of smoke generator is being used when testing/developing C1e complaint detectors
- The group agreed that the most critical parameter of an artificial smoke source is the particle size
Task Group Open Items

- FAATC will continue testing C1e compliant detectors vs a variety of smoke sources
- FAATC has potential collaboration with TSI, inc., to evaluate particle measurement technologies and monodisperse aerosol generators
- Detector manufacturers asked to loan C1e compliant detectors to FAATC for this effort
- Detector manufacturers asked to provide make/model of smoke generators used to test C1e compliant detectors

Next Meeting Thursday 11/2 After Systems Fire Protection Working Group Meeting
Related Research

• Particle size measurement of artificially generated smoke aerosols (Tina Emami, Rutgers University)

• Improvements in Aircraft Fire Detection (Jim Milke, University of Maryland)

• Evaluation of response of C1e compliant detector to a variety of smoke sources (Matt Karp, FAATC)
Questions?

For Further Information

Contact
Robert I. Ochs
DOT/FAA Technical Center
ANG-E211 Systems Fire Protection
Building 287
Atlantic City International Airport, NJ, 08405
(p) 609.485.4651
(f) 609.646.5229
(e) robert.ochs@faa.gov
(w) http://www.fire.tc.faa.gov