
Vaporization of JPVaporization of JP--8 Jet Fuel in a 8 Jet Fuel in a 
Simulated Aircraft Fuel Tank Under Simulated Aircraft Fuel Tank Under 
Varying Ambient ConditionsVarying Ambient Conditions

Robert I Ochs
Federal Aviation Administration William J. Hughes Technical Center

International Aircraft Systems Working Group Meeting
October 26, 2006



2

OutlineOutline

PART ONE – INTRODUCTION
• Motivation
• Review of Literature
• Objectives

PART TWO – MODEL DESCRIPTION
• Description of Model
• Discussion of JP-8 and Jet A fuel characterization

PART THREE – EXPERIMENTAL 
• Description of Experimental Setup and procedures
• Typical fuel vaporization results



PART ONE:  INTRODUCTIONPART ONE:  INTRODUCTION



4

IntroductionIntroduction
• Focus of this work is the study of 

jet fuel vaporization within a fuel 
tank

• Primary motivation resulted from 
the TWA Flight 800 disaster in 
1996

• NTSB-led accident investigation 
determined the cause of the crash 
was an explosion in a nearly 
empty center wing fuel tank 
caused by an unconfirmed ignition 
source
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Fuel VaporizationFuel Vaporization
• Flammable vapors 

were said to exist 
due to the 
combined effects of 
bottom surface 
heating and very 
low fuel quantity 
within the tank

• Low fuel quantity 
results in different 
compositions 
between the liquid 
and the vapor

• Lighter low 
molecular weight 
components 
vaporize first

• These components 
are known to have 
a significant effect 
on vapor 
flammability
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Vent
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Fuel 
Vapor

Ullage Space
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Review of LiteratureReview of Literature
Fuel Tank Flammability

• Nestor, 1967: 
Investigation of Turbine 
Fuel Flammability Within 
Aircraft Fuel Tanks

• Kosvic, et al., 1971: 
Analysis of Aircraft Fuel 
Tank Fire and Explosion 
Hazards

• Summer, 1999, 2000, 
2004: Mass Loading, Cold 
Ambient effects on Fuel 
Vapor Concentrations, 
Limiting Ullage Oxygen 
Concentrations 

Jet Fuel Research

• Shepherd, et al, 1997, 
1999: Jet A composition, 
flashpoint, and explosion 
testing

• Woodrow, 2000: 
Characterization of Jet 
Fuel Vapor and Liquid

No fuel vaporization data sets 
including simultaneously 
varying ambient temperatures 
and pressures 
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Objectives Objectives 

• An experiment was designed to:

• Simulate in-flight environment around a fuel tank
• Fuel tank situated in an environmental chamber that could simultaneously vary 

the ambient chamber temperature and pressure

• Measure conditions in and around the fuel tank
• Fuel tank instrumented with thermocouples
• Ullage fuel vapor concentration measured with a flame ionization detector

• Comprehensive data sets were generated for model validation

• A pre-existing model was used to compare measured and calculated 
ullage gas temperature and ullage vapor concentration

• The same model was used to make flammability assessments and to 
discuss the flammability in terms of the overall transport processes 
occurring within the fuel tank



PART TWO: MODEL PART TWO: MODEL 
DESCRIPTIONDESCRIPTION
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Modeling Fuel VaporizationModeling Fuel Vaporization

• Calculations can be performed to determine the amount of 
fuel vapor existing in the ullage space at a given moment

• The model used in this work (Polymeropoulos 2004) 
employed the flow field that developed as a consequence of 
natural convection between the heated tank floor and the 
unheated ceiling and sidewalls

• Combined with flammability limit correlations, the model 
can give estimates of the duration of time in which the fuel 
tank can be considered flammable
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Physical ConsiderationsPhysical Considerations
• 3D natural convection heat and mass 

transfer 

• Liquid vaporization
• Vapor condensation

• Variable Pa and Ta

• Multicomponent vaporization and 
condensation

• Well mixed gas and liquid phases

• Raullage~o(109)
• Raliquid~o(106) 
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Principal AssumptionsPrincipal Assumptions

• Well mixed gas and liquid phases
• Uniformity of temperatures and species concentrations in the 

ullage gas and in the evaporating liquid fuel pool   
• Based on the magnitude of the gas and liquid phase Rayleigh 

numbers (109 and 105, respectively)    

• Use of available experimental liquid fuel and tank wall temperatures 

• Quasi-steady transport using heat transfer correlations and the 
analogy between heat and mass transfer for estimating film 
coefficients for heat and mass transfer

• Liquid Jet A composition from published data of samples with similar 
flash points as those tested (Woodrow 2000)
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Heat and Mass TransportHeat and Mass Transport

• Liquid Surfaces (species evaporation/condensation)
• Fuel species mass balance
• Henry’s law (liquid/vapor equilibrium)
• Wagner’s equation (species vapor pressures)

• Ullage Control Volume (variable pressure and temperature)
• Fuel species mass balance
• Overall mass balance (outflow/inflow)
• Overall energy balance

• Heat transfer correlations from natural convection in 
enclosures

• Heat and mass transfer analogy for the mass transfer 
coefficients
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Characterization of Multicomponent Characterization of Multicomponent 
Jet FuelJet Fuel

• Samples of Jet-A have been characterized by speciation at 
and near the fuel flash point (Naegeli and Childress 1998)

• Over 300 hydrocarbon species were found to completely 
characterize Jet-A and JP-8

• It was found by Woodrow (2000) that the fuel composition 
could be estimated by characterizing it in terms of a number 
of n-alkane reference hydrocarbons, determined by gas 
chromatography

• The approach taken by Woodrow effectively reduces the 
number of components from over 300 down to 16 (C5-C20 
alkanes)

• The results from Woodrow’s work present liquid 
compositions of different JP-8 samples with varying 
flashpoints in terms of the mole fractions of C5-C20 alkanes

• Since fuels of different composition could be represented by 
their respective flashpoints, it is evident that the flashpoint 
is dependent upon the fuel composition
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Characterization of Experimental Characterization of Experimental 
FuelFuel

• Fuel used in this 
experimentation was 
tested twice for 
flashpoint

• Both tests resulted in a 
fuel flashpoint of 117°F

• Characterized fuels 
from Woodrow’s work 
with similar flashpoints 
were sought to 
represent the 
experimental fuel

• Compositions of two fuels 
with flashpoints of 115°F 
and 120°F were used to 
essentially “bracket” the 
experimental fuel with 
flashpoint of 117°F



PART THREE: PART THREE: 
EXPERIMENTALEXPERIMENTAL

Apparatus, Procedures, and Results
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Facility houses an environmental chamber
designed to simulate the temporal
changes in temperature and pressure
appropriate to an in-flight aircraft

• Can simulate altitudes from sea 
level to 100,000 feet

• Can simulate temperatures 
from -100°F to +250°F

Aluminum fuel tank placed 
inside environmental 
chamber

• 36”w x 36” d x 24” h, 
¼” Al

• 2 access panels on 
top surface for 
thermocouple 
penetration and ullage 
sampling

• 2” diameter vent hole, 
3” diameter fuel fill

• All experimentation 
performed at the William J. 
Hughes Technical Center, 
Atlantic City Int’l Airport, NJ 
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InstrumentationInstrumentation
• Omega® K-type 

thermocouples
• 3 bolt-on surface mount
• 1 adhesive surface mount
• 8 1/16” flexible stainless 

steel
• Measurement error of 

±1°F
• Dia-Vac® dual heated head 

sample pump
• Technical Heaters® heated 

sample lines
• J.U.M.® model VE7 total 

hydrocarbon analyzer flame 
ionization detector (FID)

• Omega® high sensitivity 0-
15 psia pressure transducer

• Brisk-Heat® 2,160 watt 
silicone rubber heating 
blanket
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Experimental ProcedureExperimental Procedure
• Initial Conditions

• The initial condition was decided 
to be at the point of equilibrium, 
typically achieved about 1-2 hours 
after fuel was loaded and chamber 
was sealed

• Initial data indicated that at 
equilibrium the tank temperatures 
and ullage vapor concentration 
varied little with time (quasi-
equilibrium)

• This point was critical to the 
calculations, as the subsequent 
time-marching calculations 
initiated with this point

• Quasi-equilibrium was said to 
exist if the ullage vapor 
concentration varied by less than 
1,000 ppm (0.1%) over a period 
of ten minutes

• Test Matrix

• A quantity of 5 gallons was used for 
each test

• An arbitrary fuel temperature setpoint
approximately 30°F above the initial 
temperature was found to create 
sufficient ullage vapor concentrations 
within the calibration range

• Dry tank tests

• Isooctane

• Constant ambient pressure

• Varying ambient temperature and 
pressure

• Repeatability

Test Type: 0 10,000 20,000 30,000
Const. P X X X X
Vary T & P N/A X X X
Isooctane X N/A N/A N/A
Dry Tank X N/A N/A X

Altitude
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Typical Results: Fuel Tank at Sea Typical Results: Fuel Tank at Sea 
Level, Constant Ambient ConditionsLevel, Constant Ambient Conditions

• Similar liquid 
heating profiles 
were used for 
tests of same 
type

• Heating and 
vaporization 
trends seen 
here typical of 
all other tests

• Note the 
uniformity in 
the ullage gas 
temperature 
(well-mixed)
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Validation of the Well Mixed Validation of the Well Mixed 
AssumptionAssumption

• Model assumes uniform, well-
mixed ullage gas from the 
magnitude of the Raleigh 
number, based on the floor to 
ceiling temperature difference 
and the distance between 
them, typically of order 109

• This assumption is validated by 
the experimental data from 
three ullage thermocouples in 
various spatial locations within 
the ullage
• One test with no fuel in the 

tank
• One test with fuel in the 

tank

• Similar uniformity in ullage gas 
temperature was found in all 
other tests as well
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Ullage Gas Temperature PredictionsUllage Gas Temperature Predictions
• The data from the same 

two tests input into the 
model to calculate the 
ullage gas temperature

• Ullage gas temperature 
predictions were within 
the thermocouple 
measurement error

• Ullage gas temperature 
predictions agree well 
with measured ullage gas 
temperature
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Isooctane Fuel VaporizationIsooctane Fuel Vaporization

• A pure component fuel of known 
composition was used to remove 
the ambiguity of fuel composition 
from the model calculations

• Isooctane is quite volatile at room 
temperature, so the fuel had was 
cooled to near 3°F to obtain fuel 
vapor concentrations within the 
FID calibration range of 0-4% 
propane

• Satisfactory agreement between 
measured and calculated ullage 
vapor concentrations was 
obtained, considering the 
difficulties involved in using 
isooctane
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Constant Ambient Constant Ambient 
Pressure at Sea LevelPressure at Sea Level

• Two fuel compositions (F.P. 
= 115 and 120 °F) with 
flashpoints bracketing the 
experimental fuel’s 
flashpoint (F.P. = 117°F)
were used to calculate the 
ullage vapor concentrations

• Two tests are shown with 
similar heating profiles, 
both with 5 gallons of fuel 
in a tank at sea level

• Calculated results were in 
good agreement with 
measured data
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Intermittent Ullage Vapor SamplingIntermittent Ullage Vapor Sampling

• The F.I.D.’s built-in sample pump could 
not maintain the required sample 
pressures when sampling from reduced 
ambient pressures

• The dual heated head sample pump was 
used to supplement the built-in pump to 
maintain the sample pressure

• However, sampling continuously at a 
high flow rate had the effect of drawing 
in air through the tank vents, thus 
diluting the ullage vapor

• It was decided to sample intermittently 
in order to maintain sample purity

• Since the F.I.D. had a quick 
response time, the only sample lag 
was created by the length of the 
sample lines

• A sample time of 30 seconds every 
ten minutes proved to be sufficient 
for ullage gas sampling

• Intermittent sampling was compared 
with continuous sampling at sea level for 
two tests with similar heating profiles 
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Simulated Flight Simulated Flight 
ConditionsConditions
10,000 ft. Cruise10,000 ft. Cruise

• Simulated Flight Conditions

• One hour of ground time 
with bottom surface fuel 
tank heating

• Ascend to cruise at 1,000 
ft./min.

• Cruise for one hour
• Descend to ground at -

1,000 ft./min.

• Standard atmosphere 
pressure 
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Simulated Flight Simulated Flight 
ConditionsConditions
20,000 ft. Cruise20,000 ft. Cruise
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Simulated Flight Simulated Flight 
Conditions Conditions 
30,000 ft. Cruise30,000 ft. Cruise

• Good agreement 
was found between 
calculated and 
measured results 
for varying ambient 
conditions
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Calculated Mass Calculated Mass 
Transport:Transport:
Fuel tank at sea levelFuel tank at sea level

• The good agreement 
between calculated and 
measured values gives 
confidence in the model

• The temporal variation of 
ullage gas concentration can 
be explained by the model’s 
calculations of temporal 
mass transport

• The mass of fuel stored in 
the ullage gas at a given 
moment can be calculated 
when considering

• Mass of fuel vaporized
• Mass of fuel condensed on 

inner surfaces
• Mass of fuel vented out
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Calculated Mass Calculated Mass 
Transport:Transport:
Simulated Flight at 30,000Simulated Flight at 30,000’’

• The variation of ullage gas 
concentration can be explained by 
the model’s calculations of temporal 
mass transport

• The mass of fuel stored in the ullage 
gas at a given moment can be 
calculated when considering

• Mass of fuel vaporized
• Mass of fuel condensed on inner 

surfaces
• Mass of fuel vented out
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Determination of the LFLDetermination of the LFL
• For liquids of known composition, Le Chatelier’s rule can be 

used to estimate the LFL (Affens and McLaren 1972)

• Empirical formula that correlates flammability limits of multi-
component hydrocarbon fuels with the flammability limits of the 
individual components

• Accounts for both the concentration and composition of the fuel-
air mixture

• The mixture is considered flammable if LC>1

( )∑ →=∗−=
I i

i Ni
LFL

xTLC 1,000721.002.1

• An empirical criterion for estimating the FAR at the LFL 
states that at the LFL the FAR on a dry air basis is (for 
most saturated hydrocarbons) (Kuchta 1985)

FAR = 0.035±0.004 at 0°C
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Flammability Flammability 
Assessment:Assessment:
Fuel tank at sea levelFuel tank at sea level

• FAR rule and Le Chatelier’s 
rule were used to assess the 
flammability using the model 
calculations

• Fuel compositions with 
flashpoints bracketing the 
experimental fuel flashpoint
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Flammability Flammability 
Assessment:Assessment:
Simulated Flight at 30,000Simulated Flight at 30,000’’

• FAR rule and Le Chatelier’s 
rule were used to assess the 
flammability using the model 
calculations

• Fuel compositions with 
flashpoints bracketing the 
experimental fuel flashpoint
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ConclusionsConclusions

• Experimentation was successful in measuring ullage vapor 
concentration in a simulated fuel tank exposed to varying ambient 
conditions

• A large data set was generated that can be used for validating fuel 
vaporization models

• The model used in this work proved to be accurate in it’s predictions 
of ullage gas temperature and ullage gas vapor concentration

• The model was useful in describing the transport processes occurring 
within the tank and explaining the ullage vapor concentration with a 
mass balance

• The model was useful in estimating the level of mixture flammability 
in the ullage utilizing both FAR and Le Chatelier’s criterion for the 
lower flammability limit
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Recommendations for Future Recommendations for Future 
Research in This AreaResearch in This Area

• Further detailed experimental data on 
JP-8 or Jet A flammability limits

• Laboratory testing in scale model 
partitioned aircraft fuel tanks

• Sampling from a fully instrumented 
fuel tank on an in-flight aircraft
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Thank YouThank You……Questions?Questions?
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