Propagation of Lithium Battery Fire in an Inert Environment

International Aircraft Systems Fire Protection Working Group Atlantic City, NJ October 29 - 30, 2014

Steve Summer Thomas Maloney Federal Aviation Administration Fire Safety Branch http://www.fire.tc.faa.gov

Background / Introduction

- Argon propelled foam was proposed as a means of mitigating a lithium battery fire.
- Would argon be more effective than nitrogen at suppressing a lithium battery fire?
 - Heat capacity of Argon: .8637 kJ/m³ K
 - Heat capacity of Nitrogen (N₂): 1.2116 kJ/m³ K
 - Nitrogen is more reactive than Argon.

Pressure Chamber

- Vacuum down to .5 psi
- Maximum 750°F at 600 PSI

Propagation of Li Battery Fire in an Inert Environment October 30, 2014

Test Setup

October 30, 2014

- 200 CR123a LiMnO2 cells were positioned in a 10 m³ pressure chamber.
- Tests were first performed in air followed by nitrogen and argon.
- For the argon and nitrogen tests partial pressures were used to achieve 9% O2.

Typical Cell Temp. Plot (N2)

Battery Fires in Reduced O₂ Environment

• 200 CR123A Manganese Dioxide cells in chamber

Air

Initial O₂: 21%

Propagation Time: 187 sec O2 Depletion: 7.25% Max THC: .2237% Max Ave. Chamber Temp. 118.1C Argon

Initial O₂: 9%

Propagation Time: 339 sec O2 Depletion: 3.67% Max THC: .7394% Max Ave. Chamber Temp. 165.5C

Nitrogen

Initial O₂: 9%

Propagation Time: 337 sec O2 Depletion: .633% Max THC: .8746% Max Ave. Chamber Temp. 37.63C

Summary

- Propagation of cells is slowed by oxygen depletion with either Argon or Nitrogen
- No noticeable difference in the propagation time when inerted with Argon or Nitrogen
- At 9% O₂, Argon was insufficient to fully prevent the battery fire, while Nitrogen did prevent the fire.

Questions?

Contact Information:

Steve Summer 609-485-4138 Steven.Summer@faa.gov

Thomas Maloney 609-485-7542 Thomas.Maloney@faa.gov

