Lithium Battery
Fire Tests

Harry Webster
FAA William J. Hughes Technical Center
Harry.Webster@faa.gov

www.fire.tc.faa.gov
There have been several incidents involving both lithium primary (non-rechargeable) and lithium-ion (rechargeable) batteries.

- **Aircraft Cargo Fire**
 - April 99 (LAX)
 - Dropped pallet of lithium primary batteries on ramp caught fire
 - No external ignition source
BACKGROUND

- **FEDEX – Memphis incident**
 - A shipment of lithium-ion batteries were placed in a cargo container and loaded into a FEDEX aircraft.
 - The handlers smelled smoke and determined it was coming from the cargo container.
 - The container was off loaded from the aircraft and burst into flames on the ramp.
 - NTSB investigation determined the source of the fire was the lithium battery shipment.
Primary Battery Major Findings

- A relatively small fire source is sufficient to start a lithium battery fire.
- The ignition of a single battery produces enough heat to ignite adjacent batteries.
- Halon 1301 is ineffective in suppressing a lithium battery fire.
- Batteries of the same type but from different manufacturers exhibit varying flammability characteristics.
Halon 1301 chemically interacts with the burning lithium and electrolyte—with no effect on fire intensity.

Cargo liner is vulnerable to penetration by molten lithium.

Batteries fuse together when exposed to flame, promoting propagation between batteries.
Primary Battery
Major Findings (Continued)

- The temperatures found in a suppressed smoldering cargo fire are sufficient to ignite a primary lithium battery
- The pressure rise due to battery ignition is sufficient to compromise the integrity of a cargo compartment
Report Published

“Flammability Assessment of Bulk-Packed, Nonrechargeable Lithium Primary Batteries in Transport Category Aircraft” by Harry Webster, June 2004

DOT/FAA/AR-04/26

Report can be found at: http://www.fire.tc.faa.gov
RSPA Interim Final Rule Issued

- “Prohibition on the Transportation of Primary Lithium Batteries and Cells Aboard Passenger Aircraft”
- 49 CFR Parts 171, 172, 173 and 175 [Docket No. RSPA-04-19886 (HM-224E) RIN 2137-AE05]
- prohibits primary lithium battery cargo shipments on passenger carrying aircraft
- Federal Register, December 15, 2004, Page 75208
Lithium-Ion Battery Flammability Tests

- HM-224E: “RSPA and the FAA will continue to study the hazards associated with the transportation of secondary (rechargeable) lithium batteries and will initiate additional actions as necessary.”

- Investigate flammability characteristics, Extinguishing system effectiveness, battery charge state, battery failure mode
Lithium-Ion Battery Types

- Initial testing will be done with 18650 type cells routinely used to power laptop computers
- Additional tests may be done with flat prismatic cells used in cell phones
- Tests will be conducted at 100% and 50% charge
Test Conditions

- The same 64 cubic foot test chamber used for the primary batteries will be used.
- Batteries will be subjected to small alcohol fires.
- Data will include chamber temperature and heat flux measurements and each test will be documented with video coverage.
- Pressure rise will be measured in the Pressure Modeling Facility.
Test Conditions (Continued)

- Batteries will be tested singly and in groups
- Halon effectiveness tests will be conducted at 5% and 3% concentration
- Oven tests will be conducted to determine the auto-ignition temperature
Lithium 18650 cells have been received from five different manufacturers.

Cells were delivered in two states of charge
– Normal shipping charge, approximately 50%
– Full charge (100%)
Typical 18650 Cell

Lithium-Ion Battery Test #
Preliminary Lithium-ion Test Results

- Tests have been conducted at both 50% and 100% charge in the 64 cubic foot chamber with 1, 4, 8 and 16 cell groups for three manufacturers.
- Cells were exposed to a small alcohol fire.
- Video, temperature and heat flux data was collected.
Typical 50% charge cell response to alcohol fire:

- Initial pressure relief through positive terminal blow out vent ports, small amount of liquid released. Liquid is flammable and readily burns when exposed to the alcohol fire.
- 20-30 seconds later, liquid electrolyte is forcefully vented through the positive terminal vent ports. This liquid is highly flammable.
Typical 50% charge cell response to alcohol fire (cont’d):

- Propagation: the heat generated by the cells that vented electrolyte would often ignite adjacent cells even after the alcohol fire had exhausted its fuel and gone out

- Explosion: occasionally, a cell did not vent, and instead exploded forcefully, expelling the entire contents of the cell from the casing
 - Fire ball from electrolyte mist
 - Large pressure pulse
Typical 100% charge cell response to alcohol fire

- Initial pressure relief through positive terminal blow out vent ports, small amount of liquid released. Liquid is flammable and readily burns when exposed to alcohol fire. Vent release much more forceful than at 50%.

- 20-30 seconds later, liquid electrolyte is forcefully vented through the positive terminal vent ports. This liquid is highly flammable and included small white sparks of burning lithium sprayed out with the electrolyte
Preliminary Lithium-ion Test Results *(Continued)*

- Typical 100% charge cell response to alcohol fire (cont’d):
 - Propagation: the heat generated by the cells that vented electrolyte would often ignite adjacent cells even after the alcohol fire had exhausted its fuel and gone out.
 - Explosion: more common than at 50%, a cell did not vent, and instead exploded forcefully, expelling the entire contents of the cell from the casing. Event was more forceful at 100% charge.
 - Fire ball from electrolyte mist
 - Large pressure pulse
First Event 50% Charge
Second Event 50% Charge
First Event 100% Charge
Second Event 100% Charge
Exploding Battery 50% Charge
18650 Cell after Exposure to Alcohol Fire
Remains of exploded cell
5% Halon Extinguisher Tests

- Tests were conducted with groups of 8 batteries, the Halon system was discharged at either the initial first event or second event.
- Batteries were tested at both 100% charge and 50% charge.
- Halon immediately extinguished the pan fire in each case, removing the heat source.
Halon extinguished the burning electrolyte from both first event fires and second event fires.

Halon discharged at first event prevented any additional venting or explosion by removing the heat source before the batteries reached critical temperature.

Halon discharged at the second event did not prevent additional batteries from venting, but the electrolyte did not catch fire. The test article filled with electrolyte gas. At 100% charge, white lithium sparks can still be seen.
Cargo Liner Exposure Tests

- Each test was conducted using 4 cells bound together and secured horizontally so that the positive terminals were 4” from the vertical cargo liner.
- Batteries were tested at both 50 and 100% charge.
- Both thin wall (single layer) and thick wall liners (double layer) were tested.
50% charge.
- The burning electrolyte charred the liner, but did not penetrate

100% charge
- The burning electrolyte and small lithium sparks had no effect on the liner other than charring
- One battery exploded and impacted the liner, knocking it off the stand, but did not damage the liner
Pressure Pulse Tests

- Tests were conducted in a sealed 10 m³ steel chamber.
- Batteries were tested at both 50 and 100%.
- Batteries were tested individually and in groups of four.
- The chamber air temperature and pressure were measured.
Pressure Pulse Facility
Pressure Pulse Results (Preliminary)

- Cargo compartments are designed to equalize pressure at about 1 psi differential.
- A single battery raises the pressure in the nearly airtight 10 m³ facility 0.2 psi.
- Four batteries can raise it as much as 1.2 psi.
- A single exploding battery can raise the pressure 0.5 psi.
Future Tests

- Repeat failure mode/propagation tests with two additional manufacturers
- Halon extinguisher tests-3% concentration
- Oven auto ignition tests
- Suppressed cargo compartment simulation