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SYMBOLS AND ABBREVIATIONS

ALCsg apparent lethal concentration; mg of sample (charged in furnace or
lost during pyrolysis) per liter of animal chamber volume required
to cause 50% of test animal deaths

D percent light tramsmittance = antiizo(lki) = 10(;23132)
\132

Dm specific optical density, max

Ds specific optical smoke density = 132 loglo(lgg)

M10 mortality after 10 min exposure, %

M20 mortality after 20 min exposure, %

M30 mortality after 30 min exposure, %

(0} oxygen index, 0, (?4. N,

%09 concentration of oxygen in animal exposure chamber, vol. %

T upper temperature limit of pyrolysis, °C

Tc temperature in animal exposure chamber, °C

Td time to death, min

% Td relative percent survival at death; % Td = L}Q%%LIQL

Tf temperature of pyrolysis furnace, °C

Tg glass transition temperature

Ti time to first sign of incapacitation, min

% Ti relative percent survival at incapacitation; % Ti = ng%%LZil

Tm melt temperature

We weight of sample charged, g
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THERMOPLASTIC POLYMERS FOR IMPROVED FIRE SAFETY
Demetrius A. Kourtides, John A. Parker, and C. J. Hilado*

Ames kesearch Center
ABSTRACT

The thermochemical and flammability characteristics of some typical
thermoplastic materials currently in use and others being considered for use
in aircraft interiors are described. The properties studied included
(1) thermomechanical properties such as glass transition and melt -emperature,
(2) changes in polymer enthalpy by differential scanning calorimetry,

(3) thermogravimetric analysis in anaerobic and oxidative environments,

(4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile
products of pyrolysis, and (7) selected physical properties. The generic
polymers that were evaluated included: acrylonitrile butadiene styrene,
bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-
poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycar-
bonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide,
polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homo-
polymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing param-
eters, including molding characteristics of some of the advanced polymers, are
described. Test results and relative rankings of some of the flammability,
smoke, and toxicity properties ure presented. Under these test conditions,
some of the advanced polymers evaluated were significantly less flammable

and toxic or equivalent to polymers in current use.

INTRODUCTION

Thermoplastic materials are used in aircraft interiors as decorative
films, compression- and injection-molded parts, and thermoformed parts.
Typical components include: passenger service units, luminaries, seat side
panels, trays and shrouds, flight station and lavatory parts, and panel
finish in the form of film. Typical applications within a wide body aircraft
are shown in Figures 1 and 2. Even though currently used materials meet regu-
latory requirements [1] there is considerable effort both by industry, air-
craft manufacturers, and government to study and define materials that would
offer improved fire resistance and, upon combustion, produce less smoke,
irritating fumes, and toxic gases [2-13].

*University of San Francisco, San Francisco, Calif.



The objectives of this program are shown in Table 1. This study assessed
the relative thermal stability, flammability, and other related thermochemical
properties of some typical state-of-the-art and candidate experimental thermo-
plastic materials and assessed their potential use as moldings, thermoformed
parts, and decorative films in aircraft interiors. State-of-the-art materials
that were evaluated included: acrylonitrile butadiene styrene (ABS),
bisphenol A polycarbonate (BPAPC), polyphenylene oxide (PPO), and polyvinyl
fluoride (PVF).

Advanced thermoplastic materials evaluated included: 9,9 bis
(4~hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer
(BPFC-DMS), chlorinated polyvinyl chloride homopolymer (CPVC), phenolphthalein
bisphenol A polycarbonate (PH-BPAPC), phenolphthalein polycarbonate (PHPC),
polyethersulfone (PES), polyphenylene sulfide (PPS), polyaryl sulfone (PAS),
and polyvinylidene fluoride (PVF5).

EXPERIMENTAL

Description of Polymers

A total of 12 polymers and 23 samples were utilized for this study. The
polymers were either commercially obtained or were experimental polymers
being developed by various laboratories. The chemical structure of the
polymers is shown in Table 2. Polymers were available as molding pellets,
extruded or solvent cast film, extruded or molded sheet, and molding powders
or pellets. The description for each polymer is also shown in Table 2. A
brief description of polymers follows: acrylonitrile butadiene styrene,
sample 18, was commercially obtained in sheet form. The chemistry of
acrylonitrile butadiene styrene has been described previously [14]. Bisphenol
A polycarbonate was available in two types: bisphenol A polycarbonate with no
fire retardants (sample 14) and one with fire retardants (sample 19). 9,9-bis
(4-hydroxyphenyl)-fluorene polycarbonate-poly (dimethylsiloxane) block polymer
was evaluated as a clear film (sample 21), as an uncured and cured molding
powder (samples 27 and 28) and as injection-molded clear discs (sample 23).
The poly (dimethylsiloxane) varied in the samples from 15% to 22%. The
chemistry and synthesis of this polymer have been described previously [15-18].
The chemistry and synthesis of the phenolphthalein-bisphenol A polycarbonate
copolymers (samples 30, 31, and 55) have been described previously [19].
Polyether sulfone was evaluated as molding pellets (samples 12 and 13) and
extruded film (sample 22). The chemistry and synthesis of the polyether
sulfone evaluated have been described previously [20]. Polyphenylene oxide
was available in molded sheet (sample 16). The chemistry of polyphenylene
oxide has been described previously [21]. Polyphenylene sulfide was evalu-
ated as molding pellets (sample 11) and molded sheet (samples 20 and 24).
Its chemistry has been described previously [22]. Polyaryl sulfone was eval-
uated as molding pellets (sample 10) and molded sheet (sample 15). Its chem-
istry has been described previously [23]. Chlorinated polyvinyl chloride
homopolymer was evaluated as molded sheets (samples 17 and 25). The chemis-
try of this polymer has been described previously [24, 25, and 26]. Poly-
vinyl fluoride and polyvinylidene fluoride were evaluated as films (samples 32
and 58). The chemistry of these polymers has been described previously [27].
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Processing of Polymers

Processing studies were conducted to determine the feasibility of
processing the advanced polymers. The purpose was to evaluate processing
parameters for molding and to optimize the parameters for molding specimens
with optimum thermophysical properties. Processing studies were conducted
on 9,9 bis (4~hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane),
. polyether sulfone, polyphenylene sulfide, and polyaryl sulfone.

9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane)
block polymer was injection-molded using a Battenfeld 78.4 g reciprocating
screw injection-molding machine. The granules of the polymer were dried prior
to molding under vacuum at 130°C until no further weight loss was noted.

The following molding process parameters were utilized: the barrel
temperature profile was set at the rear nozzle at 298°C, in the middle nozzle
at 321°C, and at the front nozzle at 315°C. The mold temperature was 121°C;
the mold surface temperature was 107°C. The injection pressure was
89635 kN/m?, the injection speed 1 sec, the injection pressure hold-time
10 sec, the feed time 25 sec, the screw rpm was 160, and the pressure in the
runner feeding disk was 7998 kN/m?. Disks with good optical clarity
(sample 23) were produced using the above molding procedure.

Molding of the other materials (polyether sulfone, polyphenylene sulfide,
and polyaryl sulfone) was accomplished in a conventionally heated molding
press using conventional compression molding techniques. All of the specimens
were made in an aluminum mold consisting of a ring segment 1.905 cm long,
7.620 cm i.d., and 1.270 cm well, screwed to 'a 0.953 cm flat plate. The ram,
a 6.350 cm long solid aluminum rod, 7.620 cm in diameter, was machined for a
slip fit into the ring. Molding parameters for these materials are
summarized in Table 3.

Molding tests were made of polyether sulfone and polyphenylene sulfide
to establish a workable temperature and pressure cycle that would form flat
panels in a thickness range of 0.254 to 0.635 cm. All materials were in the
form of pellets of about 0.381l cm long by 0.254 cm diam., and each had a
melting point of approximately 260°C. Materials were kept in a 148°C oven
and removed just prior to molding.

Polyether sulfone appears to have satisfactory molding characteristics
for producing sheet stock. Initial trials were not successful because the
pellets were not dried. Once the 148°C drying process was employed, satisfac-
tory specimens could be provided over a reasonable range of temperature and
pressure conditions, as shown in Table 3. Polyphenylene sulfide was slightly
more difficult to mold into satisfactory specimens than polyether sulfone.
The polyphenylene sulfide has a somewhat higher melting point than polyether
sulfone (approximately 267°C). However, it becomes liquid at the melting
temperature, and even low pressures force it out of the mold completely.

Yet, at slightly lower temperatures, the material does not consolidate com-
pletely under very high pressures, i.e., 27.58 MN/m?. Optimum molding con-
ditions and satisfactorily molded specimens were obtained with a molding
pressure of 6.8 MN/m? and molding temperature of 238° to 260°C. Polyaryl
sulfone was molded satisfactorilg at a molding temperature of 340° to 370°C
and molding pressure of 7.5 MN/m“.
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RESULTS AND DISCUSSION

Thermochemical Characterization

The polymers were characterized for the following chemical properties:
thermomechanical properties such as glass transition temperature (Tg), and
melt temperature (Tm), and char yield in anaerobic and oxidative
environments.

Thermomechanical properties- The glass transition (Tg) and melt (Tm)
temperatures were determined by the DuPont thermal mechanical analyzer (TMA),
Model 441, with the DuPont thermal analyzer, Model 900. Measurements were
made in the penetration or compression mode, using a hemispherical tip probe.

The materials that were studied included phenolphthalein-bisphenol A
polycarbonate copolymer, polyether sulfone, polyphenylene sulfide, polyaryl
sulfone, and polyvinylidene fluoride. The Tg and Tm data for these poly-
mers are presented in Table 4, together with data of the other polymers.

The Tg and Tm data for acrylonitrile butadiene styrene, 9,9 bis
(4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block poly-
mer, phenolphthalein polycarbonate, polyphenylene oxide, chlorinated poly-
vinyl chloride homopolymer, and polyvinyl fluoride indicated in Table 4 are
from References 14, 16, 19, 21, 28-32,

In addition to studies conducted on the TMA, differential scanning
calorimetry (DSC) studies were con-ducted with a DuPont Model 900 DSC on poly-
phenylene sulfide, polyaryl sulfone, and polyether sulfone. In the DSC for
polyether sulfone and polyaryl sulfone, an endotherm was observed when the
temperature of thermal decomposition was attained.

The thermal properties of polyphenylene sulfide are shown in Figures 3
through 5. Two endotherms and one exotherm were observed. The DSC thermo-
gram (Figure 3) shows an endotherm (a) at 90°C. This temperature corresponds
to the glass transition temperature (Tg = 89°C) determined by TMA as shown
in Figure 4. However, an enthalpy change is not associated with Tg as it
is not a first-order transition. Thus, the transition at 90°C must be due
to melting, which is a first-order tramsition. This is confirmed by the
dilatometer thermogram (Figure 5). The transition (Tg = 88°C) is essentially
isothermal. The data indicate that pclyphenylene sulfide is highly crystal-
line. Previous studies [33] have shown a glass transition temperature of
85°C. The second endotherm, Figure 3(c) at 271°C, may be due to some thermal
decomposition, even though this weight loss was not evident in the TGA thermo-
gram because of the rapid heating rate (40°C/min). The exotherm, Figure 1(b)
at 119°C, is due to crosslinking of polyphenylene sulfide. According to
previous studies [33], crosslinking with recrystallization occurs in the
presence of air. Polyphenylene sulfide again forms a glass on crosslinking.
This is evident from the very low coefficient of thermal expansion, as shown
in Figure 5. The decrease in specific volume at Tg = 118°C indicates that
the polymer shrinks on crosslinking.



A secondary transition Ta occurs at Ta = 200°C, as shown in Figure 5.
It is not detected by TMA penetration. The second glass temperature is
detected at Tg, = 250°C. The endotherm, Figure 3(c), 1s attributed to
melting of the second glass state.

In summary, polyphenylene sulfide is thermally very stable. It under-
does interesting and unusual transitions in physical state when heated, which
accounts for its good high-temperature mechanical properties. The extruded
pellets of polyphenylene sulfide are highly crystalline, with a melting point
of 89°C. Crosslinking with the formation of an amorphous glass occurs at
119°C. The glass temperature of the second glass region is 250° to 271°C.

In the case of polyvinylidene fluoride, the glass transition temperature
is at about 40°C. The glassy state is transformed with increasing tempera-
ture into a rubbery or elastomeric state. The material melts at ..bout 145°C.

Thermogravimetric Analyses- Thermal analyses of the polymers were
conducted on a DuPont 950 thermogravimetric analyzer (TGA) using both nitrogen
and air atmospheres with a sample size of 10 mg. The thermogravimetric analy-
sis data of 40°C/min heating rate in nitrogen and in air are shown in
Figures 6 through 13.

The pyrolysis of the samples in air and nitrogen atmospheres was con-
ducted to determine the pyrolysis temperature of the samples in order that
similar temperatures be utilized in the furnace used to pyrolyze samples for
assessing their relative toxicity as described later in the text. Pyrolysis
in an air atmosphere is intended to approximate the environment in the pyroly-
sis tube at the start of the tczicity test; pyrolysis in a nitrogen atmosphere
is intended to approximate the environment in the pyrolysis tube during the
test after the original air has been displaced by pyrolysis effluent. The
degradation products are continuously removed from the sample during thermo-
gravimetric analysis, and in the relative toxicity test apparatus described
later they are conveyed only by normal thermal flow. The TGA data in the
nitrogen atmosphere are considered more relevant, because in the toxicity
apparatus the pyrolysis effluents that evolved at lower temperature have
essentially displaced the original air by the time the temperature has reached
800°C.

All thermoplastics underwent thermooxidative decomposition in two major
steps, which is characteristic of polymeric materials. The test materials
contained 1 to 3% moisture, which was lost between 200° to 280°C. This
weight loss was not as evident in the fast heating rate (40°C/min) as it was
in the lower heating rate (10°C/min).

9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane)
block polymer (samples 21, 23, 27, and 28) is the most stable transparent
thermoplastic polymer and gives the highest char yield in nitrogen and air.
Polyphenylene sulfide (samples 11, 20, and 24) is the most stable polymer
tested in both the anaerobic and oxidative environments. According to previ-
ous studies [33], thermooxidative degradation of polyphenylene sulfide occurs
rapidly above 520°C. This is in excellent agreement with the present studies,
during which degradation occurred at approximately 500°C. The TGA data for
all polymers evaluated are summarized in Table 5.
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Physical Properties

Some of the physical properties of the polymers are shown in Table 6.
Properties that were evaluated included specific gravity, tensile strength,
ultimate elongation, heat deflection temperature, flexural strength, flexural
modulus, impact strength, and compressive strength. Phenolphthalein-bisphenol
A polycarbonate copolymer was not available in sufficient quantity to permit
mechanical testing. The physical properties of the advanced polymers are
within the range of the desired properties of thermoplastic materials for
aircraft interior components [34].

Flammability Properties

Oxygen index- The oxygen index of the polymers was determined Jer
ASTM D-2863 and is shown in Table 7. Polyphenylene sulfide and 9,9 bis
(4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block
polymer had the highest oxygen index of the polymers tested.

Smoke evolution- Smoke evolution from the polymers was determined using
the NBS-Aminco smoke density chamber. The procedure and test method used
were essentially those described by NFPA-258-T [35]. A detailed description
of the NBS smoke chamber can be found in Reference 36. The Ds values are
obtained from individual test data and then averaged. The test results
obtained are presented in Tables 8 and 9 and Figures 14-16. Tests were con-
ducted at a heat flux of 2.5 W/cm? under flaming and smoldering conditionms.
Of the state-of-the-art materials, polyvinyl fluoride has an extremely low
smoke evolution. Of the advanced wcterials, polyvinylidene fluoride has the
lowest smoke evolution. The low smoke evolution of PVF was caused by the thin
film utilized in this test. The film was consumed very rapidly upon applica-
tion of the pilot flame. Similar smoke tests conducted by another laboratory
[34] utilizing thicker PVF films indicated a specific optical density of 58 in
4 min. 9,9 bis (4~hydroxyphenyl) fluorene polycarbonate-poly (dimethyl-
siloxane) block polymer also exhibited low smoke evolution. Phenolphthalein-
bisphencl A polycarbonate copolymer and phenolphthalein polycarbonate were not
available in sufficient quantity to permit determination of the smoke
evolution.

Relative toxicity- The relative toxicity of the pyrolysis effluents of
the thermoplastic materials was determined. The methodology and apparatus
utilized for assessing the relative toxicity of the pyrolysis effluents has
been described previously [37-44].

A summary of the procedure is as follows.

Four swiss albino mice were placed in an animal exposure chamber (4.2
liter vol.), shown in Figure 17, and given a minimum of 5 min to adjust to
their surroundings. With both sample and animals in place, the entire system
was sealed and all joints checked for proper sealing. The animal exposure
chamber was the last part sealed, to minimize oxygen consumption before the
actual start of test. The polymer sample was placed in a quartz tube in a
furnace preheated to 200°C. At the start of the test, the furnace was turned
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on at the predetermined heating rate of 40°C/min. When the upper temperature
limit of 800°C was approached or reached, it was maintained by either auto-
matic or manual control until the end of the test. The test period was nor-
mally 30 min; if 100% mortality occurred in less than 30 min, the test was
terminated upon the death of the last surviving animal. It is difficult to
choose time to death or time to incapacitation as the criterion of toxicity,
because some materials produce incapacitation more rapidly than other materi-
als. 1In these tests, 1.0 g of polymer was placed in the furnace for pyroly-
sis. The test results in terms of time to first sign of incapacitation (Ti)
and time to death (Td) are shown in Tables 10-12. Parameters measured during
the test and the minimum or maximum values during the test were as follows:
concentration of oxygen in animal exposure chamber, 13.2% by volume (minimum);
temperature in animal exposure chamber, 29.5°C (maximum); temperature of
pyrolysis furnace, 590-800°C; time to incapacitation (Ti) of the first animal
observed and time to death (Td). The times indicated are the m: "n average
times and the standard deviation between experiments for groups of replica
experiments. The relative percent survival time at incapacitation (percent
Ti = (100)(Ti)/30) and the relative percent survival time at death (percent
Td = (100)(Td)/30) is indicated in Table 16.

Chlorinated polyvinyl chloride homopolymer (samples 17 and 25) and
polyphenylene oxide (sample 16) appeared to be among the least toxic on the
basis of time to death, and among the most toxic on the basis of time to
first sign of incapacitation. The choice of time to death or time to incapaci-
tation as the criterion of toxicity evidently affects rankings of relative
toxicity. Bisphenol A polycarbonate (sample 14) appeared to be the least
toxic on the basis of time to death. Lower times (Ti and Td) would probably
be obtained for polyvinyl fluorilz (sample 32) and polyvinylidene fluoride
(sample 58) should the samples be pyrolyzed in a tube which would not react
with the hydrogen fluoride evolved from the samples during pyrolysis. The
quartz tube is slightly etched during the heating cycle in the furnace.

Similar studies were conducted to determine the apparent lethal concen-
tration (ALCsp) produced from the pyrolysis effluents of these materials.
The methodology utilized for these tests has been described previously [44].
The same heating rates were utilized as above. The results of these tests
are indicated in Tables 13-14. 9,9 bis (4-hydroxyphenyl) fluorene
polycarbonate-poly (dimethylsiloxane) block polymer was the least toxic
material when tested in this manner.

Effect of char yield on oxygen index- Previous studies [45] have shown
a correlation between the flammability properties of some polymers and their
char yield. Figure 18 compares the oxygen index of the polymers evaluated
with their relative anaerobic char yield. It can be seen that, in general,
polymers with high char yield exhibit a high oxygen index. Chlorinated poly-
vinyl chloride homopolymer (samples 17 and 25) exhibit a high oxygen index and
a relatively low char yield. Previous studies [46] have shown that the
principal combustion product of this polymer from ambient to 350°C are hydro-
gen chloride and benzene. The mole ratio of hydrogen chloride to benzene was
2.5:1 during the initial weight loss (approximately 63% weight loss from ambi-
ent to 350°C). This is equivalent to 0.539 g of HC1l per 1.0 g of initial



sample of polymer combusted. It is known [47] that HCl is a flame inhibitor
and the high oxygen index is attributed to the quenching effect of the HC1
during the test.

CONCLUSION

The flammability properties of the polymers evaluated are summarized in
Table 15. The relative flammability characteristics of these polymers are
indicated in Table 16. For comparative purposes, the values of the material
properties are indicated in terms of percent, 100% indicating the most desir-
able fire-safe material properties. The problem of evaluation of materials
in terms of fire safety is complex. To rank materials, it would be desirable
to develop a "fire safety equation" that would assign weight to srecific meas-
urements of each variable, that is, oxygen index, smoke evolution, toxicity
of the oxidative pyrolysates, and thermal stability (char yield) of each
polymer. Development of such an equation is dependent on: identification of
the variables (0I, D, %Ti, %Td, Yc), determination of the importance of each
variable to the real aircraft fire situation, selection of measurement tech-
niques for each variable, and determination of the weight to be assigned to
the measurement of each specific variable to reflect the real fire situation.
It is beyond the scope of this study to define such an equation, but some
general conclusions may be drawn based on the data presented in Table 16.
Assuming equal weight assignment to each flammability parameter and averaging
the percent values indicated, the polymers and their relative percent values
could be rated as follows, in order of increased fire safety: polyphenylene
oxide (sample 16) 28%; acrylonitrile butadiene styrene (sample 18) 30.1%;
bisphenol A polycarbonate (sample 15) 32.5%; chlorinated polyvinyl chloride
homopolymer (sample 17) 35.5%; bisphenol A polycarbonate (sample 14) 37.7%;
polyaryl sulfone (sample 15) 42.4%Z; polyvinylidene fluoride (sample 58)
47.4%; polyvinyl fluoride (sample 32) 51.1%; polyether sulfone (sample 12)
51.3%; 9,9 bis (4~hydroxyphenol) fluorene polycarbonate-poly (dimethylsiloxane)
block polymer (sample 23) 52.1%; and polyphenylene sulfide (sample 20) 53.0%.
Based on these values, the relative ranking of the materials evaluated is
indicated in Table 17. The polyvinyl fluoride film (sample 32) would have
normally shown lower in the scale of fire-resistant polymers, except that low
Ds numbers were obtained during the smoke tests, since the film was consumed
early in the tests. In the toxicity tests, the relatively high Td times
obtained for polyvinyl fluoride (sample 32) and polyvinylidene fluoride
(sample 58) are possibly attributed to the reaction of hydrogen fluoride
evolved during the pyrolysis with the quartz tube in the furnace.
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TABLE 5.- CHAR YIELD OF THERMOPLASTICS IN NITROGEN AND AIR

SAMPLE NO.

18
14
19
21
23
27
30
31
55
12
13
22
16
11
20
24
10
15
17
25
32
58

“NOT DETERMINED

POLYMER

ABS
BPAPC
BPAPC

BPFC-DMS
BPFC-DMS
BPFC-DMS
PH-BPAPC
PH-BPAPC
PHPC

PES

PES

PES

PPO

PPS

PPS

PPS

PAS

PAS
cPVC
CPVC

PVF
PVF,

7 800°C, Ny

19

18
30
27
58
61
58

47
43
50
44
43

9
17
66
68
72

50
42
29
28

8
30

7 800°C, AIR

*ow o

19
19

N

10
10

17
42
47
47

10

g W owm
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TABLE 7.- CXYGEN INDEX FOR POLYMERS

OXYGEN INDEX

gy POLYMER AT 23°C,
ASTM D-2863

18 ACRYLONITRILE BUTADIENE STYRENE 345
(ABS)

14 32.0
BISPHENOL A POLYCARBONATE (BPAPC)

19 335

21 29.0-32.0
9,9 BIS (4-HYDROXYPHENYL) FLUORENE

23 POLYCARBONATE -POLY (DIMETHYL- 475

27 SILOXANE) BLOCK POLYMER (BPFC-DMS)

28

30 PHENOLPHTHALEIN-BISPHENOL A 38.0

31 POLYCARBONATE COPOLYMER (PH-BPAPC) 26.8

55 PHENOLPHTHALEIN POLYCARBONATE (PHPC) 320

12 405

13 POLYETHER SULFONE (PES) 40.0

22 30.0

16 POLYPHENYLENE OXIDE (PPO) 32.0

11 48.0

20 POLYPHENYLENE SULFIDE (PPS) 48.0

24 50.0

10 36.0
POLYARYL SULFONE (PAS)

15 30.0

17 CHLORINATED POLYVINYL CHLORIDE 56.0

25 HOMOPOLYMER (CPVC) 56.0

32 POLYVINYL FLUORIDE (PVF) 16.0—20.0

58 POLYVINYLIDENE FLUORIDE (PVF) 434
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TABLE 11.- RELATIVE TOXICITY OF DEGRADATION PRODUCTS (TIME TO INCAPACITATION)

TIME TO
SAMPLE POLYMER INCAPACITATION
NUMBER (T, IN MINUTES)
17 CHLORINATED POLYVINYL CHLORIDE 6.29 + *60
HOMOPOLYMER (CPVC)
16 POLYPHENYLENE OXIDE (PPQ) 8.65+2.29
25 CHLORINATED POLYVINYL CHLORIDE 9.00 —
HOMOPOLYMER (CPVC)
58 POLYVINYLIDENE FLUORIDE (PVF3) 9.19 + 4.67
1 POLYPHENYLENE SULFIDE (PPS) 9.59 + 1.30
22 POLYETHER SULFONE (PES) 963 —
10 POLYARYL SULFONE (PAS) 10.01 £ 1.35
20 POLYPHENYLENE SULFIDE (PPS) 10.22 + 1.80
15 POLYSULFONE (PAS) 10.61 £ 1.33
12 POLYETHER SULFONE (PES) 10.72 £ 1.74
24 POLYPHENYLENE SULFIDE (PPS) 10.48 + 1.89
18 ACRYLONITRILE-BUTADIENE-STYRENE 11.36 + 1.32
(ABS)
19 BISPHENOL A POLYCARBONATE (BPAPC) 12.82 £ 2.76
13 POLYETHER SULFONE (PES) 13.39+ 2.28
31 PHENOLPHTHATEIN-BISPHENOL A 14.16 ——
POLYCARBONATE COPOLYMER (PHBPA PC)
14 BISPHENOL A POLYCARBONATE (BPAPC) 16.02 + 1.86
23 9,9, BIS (-HYDROXYPHENYL) FLUORENE 16.77 ——
POLYCARBONATE-POLY (DIMETHYL-
SILOXANE) BLOCK POLYMER (BPFC-DMS)
32 POLYVINYL FLUORIDE (PVF) 16.94 + 2.39
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TABLE 12.- RELATIVE TOXICITY OF DEGRADATION PRODUCTS (TIME TO DEATH)

NUMBER POLYMER (Ta. IN MING 25
22 POLYETHER SULFONE (PES) 10.26 + 0.32
11 POLYPHENYLENE SULFIDE (PPS) 10.57 + 1.40
20 POLYPHENYLENE SULFIDE (PPS) 11.07 £ 1.63
10 POLYARYL SULFONE (PAS) 11.23+ 148
12 POLYETHER SULFONE (PES) 12,22 + 152
24 POLYPHENYLENE SULFIDE (PPS) 12.04 £ 1.86
13 POLYETHER SULFONE (PES) 1442+ 234
15 POLYSULFONE (PAS) 15.72 + 1.40
19 BISPHENOL A POLYCARBONATE (BPACPC) 16.08 + 3.98
31 PHENOLPHTHALEIN-BISPHENOL A 16.92 + 0.31
_ POLYCARBONATE COPOLYMER (PHBPA-PC)

58 POLYVINYLIDENE FLUORIDE (PVF3) 17.34 £ 3.22

18 ACRYLONITRILE-BUTADIENE-STYRENE 19.30 £ 4.25
{ABS)

16 POLYPHENYLENE OXIDE (PPO) 19.96 + 3.61

32 POLYVINYL FLUORIDE 20.50 + 2,05

23 9,9, BIS (-HYDROXYPHENYL) FLUORENE 2052 + 1.96
POLYCARBONATE-POLY (DIMETHYL-
SILOXANE) BLOCK POLYMER (BPFC-DMS)

17 CHLORINATED POLYVINYL CHLORIDE 21.76 £ 4.22
HOMOPOLYMER (CPVC)

25 CHLORINATED POLYVINYL CHLORIDE 22,74 £ 6.22
HOMOPOLYMER (CPVC)

14 BISPHENOL A POLYCARBONATE (BPAPC) 23.04 +5.25
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THERMOPLASTIC POLYMERS (ALCsg)

TABLE 13.- APPARENT LETHAL CONCENTRATIONS OF PYROLYSIS PRODUCTS OF SOME

BASED ON WEIGHT OF SAMPLE LOST

SAMPLE % WEIGHT
NUMBER POLYMER ma/l | REMAINING
20 | POLYPHENYLENE SULFIDE 11.4 + 1.1 56.82
24 | POLYPHENYLENE SULFIDE 133+ 17 59.22
11 | POLYPHENYLENE SULFIDE 13512 56.45
14 | BISPHENOL A POLYCARBONATE 144+4.1 4.00
15 | POLYARYL SULFONE 14.8+12 10.84

9.9, BIS (4-HYDROXYPHENYL)
FLUORENE |
27 | POLYCARBONATE-PDLY (DIMETHYL- | 163+ 15 52.06
SILOXANE) BLOCK POLYMER
(BPFC-DMS)
10 | POLYARYL SULFONE 16.9+ 05 21.03
12 | POLYETHER SULFONE 173+ 04 21.72
18 | ACRYLONITRILE-BUTADIENE-
STYRENE 20.3+0.8 5.14
17 | CHLORINATED POLYVINYL
CHLORIDE HOMOPOLYMER 228+ 6.0 3.39
13 | POLYETHER SULFONE 231+21 23.26
16 | POLYPHENYLENE OXIDE 285+:87 16.18
19 | BISPHENOL A POLYCARBONATE 299+17 7.72
25 | CHLORINATED POLYVINYL
CHLORIDE HOMOPOLYMER 319+ 0.1 10.86
68 | POLYVINYLIDENE FLUORIDE 782 £ 5.0 20,69
9.9, BIS (4-HYDROXPHENYL)
28 FLUORENE 93.2+ 20 59.91

POLYCARBONATE-POLY (DIMETHYL-

SILOXANE) (BPFC-DMS)
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TABLE 14.- APPARENT LETHAL CONCENTRATIONS OF PYROLYSIS PRODUCTS OF SOME

THERMOPLASTIC POLYMERS (ALCsg)

- BASED ON WEIGHT CHARGED
SAMPLE
NUMBER POLYMER mg/l

14 BISPHENOL A POLYCARBONATE 15.0£43
15 POLYARYL SULFONE 16.6 + 2.8
18 ACRYLONITRILE-BUTADIENE-

STYRENE 214+09
10 POLYARYL SULFONE 218+25
12 POLYETHER SULFONE 22.1+0.8
17 CHLORINATED POLYVINYL

CHLORIDE HOMOPOL YMER 236+4.0
20 POLYPHENYLENE SULFIDE 264+29
13 POLYETHER SULFONE 30.1 + 3.1
11 POLYPHENYLENE SULFIDE 31.0+58
19 BISPHENOL A POLYCARBONATE 324 £ 0.9
24 POLYPHENYLENE SULFIDE 33.1+46
16 POLYPHENYLENE OXIDE 340+ 11.7

9,9, BIS (4-HYDROXYPHENYL)

FLUORENE
27 POLYCARBONATE-POLY (DIMETHYL- 344+1.6

SILOXANE ) BLOCK POLYMER

(BPFC-DMS)
25 CHLORINATED POLYVINYL

CHLORIDE HOMOPOLYMER 359+0.6
58 POLYVINYLIDENE FLUORIDE 98.6+74

9,9, BIS (4-HYDROXYPHENYL)

FLUORENE
28 POLYCARBONATE-POLY (DIMETHYL- | 2325+85

SILOXANE) BLOCK POLYMER

(BPFC-DMS)
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TABLE 16.- RELATIVE FLAMMABILITY CHARACTERISTICS OF THERMOPLASTICS

RELATIVE % SURVIVAL

AT DEATH
(Tg) (100)

AT INCAPACITATION
(Ti) (100

RELATIVE % SURVIVAL
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